IDEAS home Printed from
   My bibliography  Save this article

Spectral methods for volatility derivatives


  • Claudio Albanese
  • Harry Lo
  • Aleksandar Mijatovic


In the first quarter of 2006, the Chicago Board Options Exchange introduced, as one of the listed products, options on its implied volatility index (VIX). This created the challenge of developing a pricing framework that can simultaneously handle European options, forward-starts, options on the realized variance and options on the VIX. In this paper we propose a new approach to this problem using spectral methods. We use a regime switching model with jumps and local volatility defined by Albanese and Mijatovic and calibrate it to the European options on the S&P 500 for a broad range of strikes and maturities. The main idea of this paper is to 'lift' (i.e. extend) the generator of the underlying process to keep track of the relevant path information, namely the realized variance. The lifted generator is too large a matrix to be diagonalized numerically. We overcome this difficulty by applying a new semi-analytic algorithm for block-diagonalization. This method enables us to evaluate numerically the joint distribution between the underlying stock price and the realized variance, which in turn gives us a way of pricing consistently European options, general accrued variance payoffs and forward-starting and VIX options.

Suggested Citation

  • Claudio Albanese & Harry Lo & Aleksandar Mijatovic, 2009. "Spectral methods for volatility derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 9(6), pages 663-692.
  • Handle: RePEc:taf:quantf:v:9:y:2009:i:6:p:663-692 DOI: 10.1080/14697680902773603

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Peter Friz & Jim Gatheral, 2005. "Valuation of volatility derivatives as an inverse problem," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 531-542.
    2. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    3. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Albanese, Claudio, 2007. "Callable Swaps, Snowballs And Videogames," MPRA Paper 5229, University Library of Munich, Germany, revised 01 Oct 2007.
    2. Gabriel G. Drimus, 2012. "Options on realized variance by transform methods: a non-affine stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1679-1694, November.
    3. Fabio Antonelli & Alessandro Ramponi & Sergio Scarlatti, 2015. "Random Time Forward Starting Options," Papers 1504.03552,
    4. Nicolas Merener, 2012. "Swap rate variance swaps," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 249-261, May.
    5. Albanese, Claudio, 2006. "Operator Methods, Abelian Processes And Dynamic Conditioning," MPRA Paper 5246, University Library of Munich, Germany, revised 06 Nov 2007.
    6. Cheng, Jun & Ibraimi, Meriton & Leippold, Markus & Zhang, Jin E., 2012. "A remark on Lin and Chang's paper ‘Consistent modeling of S&P 500 and VIX derivatives’," Journal of Economic Dynamics and Control, Elsevier, vol. 36(5), pages 708-715.

    More about this item


    Volatility modelling; Volatility smile fitting; Volatility surfaces; Stochastic volatility Quantitative finance;

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:9:y:2009:i:6:p:663-692. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.