IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Operator Methods, Abelian Processes And Dynamic Conditioning

  • Albanese, Claudio

A mathematical framework for Continuous Time Finance based on operator algebraic methods oers a new direct and entirely constructive perspective on the field. It also leads to new numerical analysis techniques which can take advantage of the emerging massively parallel GPU architectures which are uniquely suited to execute large matrix manipulations. This is partly a review paper as it covers and expands on the mathematical framework underlying a series of more applied articles. In addition, this article also presents a few key new theorems that make the treatment self-contained. Stochastic processes with continuous time and continuous space variables are defined constructively by establishing new convergence estimates for Markov chains on simplicial sequences. We emphasize high precision computability by numerical linear algebra methods as opposed to the ability of arriving to analytically closed form expressions in terms of special functions. Path dependent processes adapted to a given Markov filtration are associated to an operator algebra. If this algebra is commutative, the corresponding process is named Abelian, a concept which provides a far reaching extension of the notion of stochastic integral. We recover the classic Cameron-Dyson-Feynman-Girsanov-Ito-Kac-Martin theorem as a particular case of a broadly general block-diagonalization algorithm. This technique has many applications ranging from the problem of pricing cliquets to target-redemption-notes and volatility derivatives. Non-Abelian processes are also relevant and appear in several important applications to for instance snowballs and soft calls. We show that in these cases one can eectively use block-factorization algorithms. Finally, we discuss the method of dynamic conditioning that allows one to dynamically correlate over possibly even hundreds of processes in a numerically noiseless framework while preserving marginal distributions.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://mpra.ub.uni-muenchen.de/5246/1/MPRA_paper_5246.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 5246.

as
in new window

Length:
Date of creation: 15 Dec 2006
Date of revision: 06 Nov 2007
Handle: RePEc:pra:mprapa:5246
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Yacine Ait-Sahalia, 1995. "Nonparametric Pricing of Interest Rate Derivative Securities," NBER Working Papers 5345, National Bureau of Economic Research, Inc.
  2. Hansen, Lars Peter & Scheinkman, Jose Alexandre, 1995. "Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes," Econometrica, Econometric Society, vol. 63(4), pages 767-804, July.
  3. Albanese, Claudio & Mijatovic, Aleksandar, 2006. "Spectral Methods For Volatility Derivatives," MPRA Paper 5244, University Library of Munich, Germany.
  4. Albanese, Claudio, 2007. "Callable Swaps, Snowballs And Videogames," MPRA Paper 5229, University Library of Munich, Germany, revised 01 Oct 2007.
  5. Claudio Albanese & Adel Osseiran, 2007. "Moment Methods for Exotic Volatility Derivatives," Papers 0710.2991, arXiv.org.
  6. Hansen, Lars Peter & Alexandre Scheinkman, Jose & Touzi, Nizar, 1998. "Spectral methods for identifying scalar diffusions," Journal of Econometrics, Elsevier, vol. 86(1), pages 1-32, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:5246. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.