IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/5244.html
   My bibliography  Save this paper

Spectral Methods For Volatility Derivatives

Author

Listed:
  • Albanese, Claudio
  • Mijatovic, Aleksandar

Abstract

In the first quarter of 2006 Chicago Board Options Exchange (CBOE) introduced, as one of the listed products, options on its implied volatility index (VIX). This opened the challenge of developing a pricing framework that can simultaneously handle European options, forward-starts, options on the realized variance and options on the VIX. In this paper we propose a new approach to this problem using spectral methods. We define a stochastic volatility model with jumps and local volatility, which is almost stationary, and calibrate it to the European options on the S&P 500 for a broad range of strikes and maturities. We then extend the model, by lifting the corresponding Markov generator, to keep track of relevant path information, namely the realized variance. The lifted generator is too large a matrix to be diagonalized numerically. We overcome this diculty by developing a new semi-analytic algorithm for block-diagonalization. This method enables us to evaluate numerically the joint distribution between the underlying stock price and the realized variance which in turn gives us a way of pricing consistently the European options, general accrued variance payos as well as forward-starts and VIX options.

Suggested Citation

  • Albanese, Claudio & Mijatovic, Aleksandar, 2006. "Spectral Methods For Volatility Derivatives," MPRA Paper 5244, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:5244
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/5244/1/MPRA_paper_5244.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter Friz & Jim Gatheral, 2005. "Valuation of volatility derivatives as an inverse problem," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 531-542.
    2. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    3. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albanese, Claudio, 2007. "Callable Swaps, Snowballs And Videogames," MPRA Paper 5229, University Library of Munich, Germany, revised 01 Oct 2007.
    2. Gabriel G. Drimus, 2012. "Options on realized variance by transform methods: a non-affine stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1679-1694, November.
    3. Fabio Antonelli & Alessandro Ramponi & Sergio Scarlatti, 2015. "Random Time Forward Starting Options," Papers 1504.03552, arXiv.org.
    4. Nicolas Merener, 2012. "Swap rate variance swaps," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 249-261, May.
    5. Albanese, Claudio, 2006. "Operator Methods, Abelian Processes And Dynamic Conditioning," MPRA Paper 5246, University Library of Munich, Germany, revised 06 Nov 2007.
    6. Cheng, Jun & Ibraimi, Meriton & Leippold, Markus & Zhang, Jin E., 2012. "A remark on Lin and Chang's paper ‘Consistent modeling of S&P 500 and VIX derivatives’," Journal of Economic Dynamics and Control, Elsevier, vol. 36(5), pages 708-715.
    7. F. Antonelli & A. Ramponi & S. Scarlatti, 2016. "Random Time Forward-Starting Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(08), pages 1-25, December.

    More about this item

    Keywords

    Volatility derivatives; operator methods;

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:5244. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.