IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v12y2012i2p249-261.html
   My bibliography  Save this article

Swap rate variance swaps

Author

Listed:
  • Nicolas Merener

Abstract

We study the hedging and valuation of generalized variance swaps defined on a forward swap interest rate. Our motivation is the fundamental role of variance swaps in the transfer of variance risk, and the extensive empirical evidence documenting that the variance realized by interest rates is stochastic. We identify a hedging rule involving a static European contract and the gains of a dynamic position on forward interest rate swaps. Two distinguishing features arise in the context of interest rates: the nonlinear and multidimensional relationship between the values of the dynamically traded contracts and the underlying swap rate, and the possible stochasticity of the interest rate at which gains are reinvested. The combination of these two features leads to additional terms in the cumulative dynamic trading gains, which depend on realized variance and are taken into consideration in the determination of the appropriate static hedge. We characterize the static payoff function as the solution of an ordinary differential equation, and derive explicitly the associated dynamic strategy. We use daily interest rate data between 1997 and 2007 to test the effectiveness of our hedging methodology in arithmetic and geometric variance swaps and verify that the hedging error is small compared with the bid--ask spread in swaption prices.

Suggested Citation

  • Nicolas Merener, 2012. "Swap rate variance swaps," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 249-261, May.
  • Handle: RePEc:taf:quantf:v:12:y:2012:i:2:p:249-261
    DOI: 10.1080/14697688.2010.497493
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2010.497493
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Claudio Albanese & Harry Lo & Aleksandar Mijatovic, 2009. "Spectral methods for volatility derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 9(6), pages 663-692.
    2. Windcliff, H. & Forsyth, P.A. & Vetzal, K.R., 2006. "Pricing methods and hedging strategies for volatility derivatives," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 409-431, February.
    3. Gray, Stephen F., 1996. "Modeling the conditional distribution of interest rates as a regime-switching process," Journal of Financial Economics, Elsevier, vol. 42(1), pages 27-62, September.
    4. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305 World Scientific Publishing Co. Pte. Ltd..
    5. Sam Howison & Avraam Rafailidis & Henrik Rasmussen, 2004. "On the pricing and hedging of volatility derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 11(4), pages 317-346.
    6. Peter Carr & Hélyette Geman & Dilip Madan & Marc Yor, 2005. "Pricing options on realized variance," Finance and Stochastics, Springer, vol. 9(4), pages 453-475, October.
    7. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    8. Medvegyev, Peter, 2007. "Stochastic Integration Theory," OUP Catalogue, Oxford University Press, number 9780199215256.
    9. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duyvesteyn, Johan & de Zwart, Gerben, 2015. "Riding the swaption curve," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 57-75.
    2. repec:oup:revfin:v:21:y:2017:i:3:p:987-1022. is not listed on IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:12:y:2012:i:2:p:249-261. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.