IDEAS home Printed from
   My bibliography  Save this article

Valuing Volatility and Variance Swaps for a Non-Gaussian Ornstein-Uhlenbeck Stochastic Volatility Model


  • Fred Espen Benth
  • Martin Groth
  • Rodwell Kufakunesu


Following the increasing awareness of the risk from volatility fluctuations, the market for hedging contracts written on realized volatility has surged. Companies looking for means to secure against unexpected accumulation of market activity can find over-the-counter products written on volatility indices. Since the Black and Scholes model require a constant volatility the need to consider other models is obvious. Swaps written on powers of realized volatility in the stochastic volatility model proposed by Barndorff-Nielsen and Shephard are investigated. A key formula is derived for the realized variance able to represent the swap price dynamics in terms of Laplace transforms, which makes fast numerical inversion methods viable. An example using the fast Fourier transform is shown and compared with the approximation proposed by Brockhaus and Long.

Suggested Citation

  • Fred Espen Benth & Martin Groth & Rodwell Kufakunesu, 2007. "Valuing Volatility and Variance Swaps for a Non-Gaussian Ornstein-Uhlenbeck Stochastic Volatility Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(4), pages 347-363.
  • Handle: RePEc:taf:apmtfi:v:14:y:2007:i:4:p:347-363
    DOI: 10.1080/13504860601170609

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:kap:annfin:v:13:y:2017:i:4:d:10.1007_s10436-017-0302-3 is not listed on IDEAS
    2. Shibin Zhang & Xinsheng Zhang, 2013. "A least squares estimator for discretely observed Ornstein–Uhlenbeck processes driven by symmetric α-stable motions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(1), pages 89-103, February.
    3. Imai, Junichi & Kawai, Reiichiro, 2011. "On finite truncation of infinite shot noise series representation of tempered stable laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4411-4425.
    4. Friedrich Hubalek & Martin Keller-Ressel & Carlo Sgarra, 2014. "Geometric Asian Option Pricing in General Affine Stochastic Volatility Models with Jumps," Papers 1407.2514,
    5. Akira Yamazaki, 2016. "Generalized Barndorff-Nielsen And Shephard Model And Discretely Monitored Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-34, June.
    6. Semere Habtemicael & Indranil SenGupta, 2016. "Pricing variance and volatility swaps for Barndorff-Nielsen and Shephard process driven financial markets," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-35, December.
    7. Giovanni Salvi & Anatoliy V. Swishchuk, 2012. "Modeling and Pricing of Covariance and Correlation Swaps for Financial Markets with Semi-Markov Volatilities," Papers 1205.5565,
    8. Carole Bernard & Zhenyu Cui, 2013. "Prices and Asymptotics for Discrete Variance Swaps," Papers 1305.7092,
    9. repec:eee:ejores:v:262:y:2017:i:1:p:381-400 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:14:y:2007:i:4:p:347-363. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.