IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

A Generalized Hyperbolic model for a risky asset with dependence

Listed author(s):
  • Finlay, Richard
  • Seneta, Eugene

We present a construction of the Generalized Hyperbolic (GH) subordinator model for a risky asset with dependence. The construction of the subordinator (activity time) process is implemented via superpositions of Ornstein–Uhlenbeck type processes driven by Lévy noise. It unifies, on the basis of self-decomposability of the Generalized Inverse Gaussian (GIG) distribution, the construction of the various special cases of the GH subordinator class, such as the Variance Gamma, normal inverse Gaussian, hyperbolic and, especially, t distributions. An option pricing formula for the proposed model is derived.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Statistics & Probability Letters.

Volume (Year): 82 (2012)
Issue (Month): 12 ()
Pages: 2164-2169

in new window

Handle: RePEc:eee:stapro:v:82:y:2012:i:12:p:2164-2169
DOI: 10.1016/j.spl.2012.07.006
Contact details of provider: Web page:

Order Information: Postal:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Ernst Eberlein & Sebastian Raible, 1999. "Term Structure Models Driven by General Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 9(1), pages 31-53.
  2. Fung, Thomas & Seneta, Eugene, 2010. "Extending the multivariate generalised t and generalised VG distributions," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 154-164, January.
  3. Elisa Nicolato & Emmanouil Venardos, 2003. "Option Pricing in Stochastic Volatility Models of the Ornstein-Uhlenbeck type," Mathematical Finance, Wiley Blackwell, vol. 13(4), pages 445-466.
  4. Tina Hviid Rydberg, 1999. "Generalized Hyperbolic Diffusion Processes with Applications in Finance," Mathematical Finance, Wiley Blackwell, vol. 9(2), pages 183-201.
  5. Richard Finlay & Eugene Seneta, 2008. "Stationary-Increment Variance-Gamma and "t" Models: Simulation and Parameter Estimation," International Statistical Review, International Statistical Institute, vol. 76(2), pages 167-186, August.
  6. repec:dau:papers:123456789/1380 is not listed on IDEAS
  7. Granger, Clive W.J., 2005. "The past and future of empirical finance: some personal comments," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 35-40.
  8. Leonenko, N.N. & Petherick, S. & Sikorskii, A., 2012. "A normal inverse Gaussian model for a risky asset with dependence," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 109-115.
  9. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
  10. Helyette Geman & C. Peter M. Dilip Y. Marc, 2007. "Self decomposability and option pricing," Post-Print halshs-00144193, HAL.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:12:p:2164-2169. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.