IDEAS home Printed from
   My bibliography  Save this article

The density process of the minimal entropy martingale measure in a stochastic volatility model with jumps


  • Fred Benth


  • Thilo Meyer-Brandis



We derive the density process of the minimal entropy martingale measure in the stochastic volatility model proposed by Barndorff-Nielsen and Shephard [2]. The density is represented by the logarithm of the value function for an investor with exponential utility and no claim issued, and a Feynman-Kac representation of this function is provided. The dynamics of the processes determining the price and volatility are explicitly given under the minimal entropy martingale measure, and we derive a Black & Scholes equation with integral term for the price dynamics of derivatives. It turns out that the minimal entropy price of a derivative is given by the solution of a coupled system of two integro-partial differential equations. Copyright Springer-Verlag Berlin/Heidelberg 2005

Suggested Citation

  • Fred Benth & Thilo Meyer-Brandis, 2005. "The density process of the minimal entropy martingale measure in a stochastic volatility model with jumps," Finance and Stochastics, Springer, vol. 9(4), pages 563-575, October.
  • Handle: RePEc:spr:finsto:v:9:y:2005:i:4:p:563-575
    DOI: 10.1007/s00780-005-0161-z

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Fred Espen Benth & Martin Groth & Rodwell Kufakunesu, 2007. "Valuing Volatility and Variance Swaps for a Non-Gaussian Ornstein-Uhlenbeck Stochastic Volatility Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(4), pages 347-363.
    2. Rheinlander, Thorsten & Steiger, Gallus, 2006. "The minimal entropy martingale measure for general Barndorff-Nielsen/Shephard models," LSE Research Online Documents on Economics 16351, London School of Economics and Political Science, LSE Library.
    3. Dirk Becherer, 2007. "Bounded solutions to backward SDE's with jumps for utility optimization and indifference hedging," Papers math/0702405,
    4. Thorsten Rheinländer & Jenny Sexton, 2011. "Hedging Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8062.
    5. Hubalek, Friedrich & Sgarra, Carlo, 2009. "On the Esscher transforms and other equivalent martingale measures for Barndorff-Nielsen and Shephard stochastic volatility models with jumps," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2137-2157, July.
    6. Wanyang Dai, 2014. "Mean-variance hedging based on an incomplete market with external risk factors of non-Gaussian OU processes," Papers 1410.0991,, revised Aug 2015.
    7. Smimou, K. & Bector, C.R. & Jacoby, G., 2007. "A subjective assessment of approximate probabilities with a portfolio application," Research in International Business and Finance, Elsevier, vol. 21(2), pages 134-160, June.
    8. Choulli, Tahir & Vandaele, Nele & Vanmaele, Michèle, 2010. "The Föllmer-Schweizer decomposition: Comparison and description," Stochastic Processes and their Applications, Elsevier, vol. 120(6), pages 853-872, June.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:9:y:2005:i:4:p:563-575. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.