IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v12y2012i3p411-424.html
   My bibliography  Save this article

Models for stock returns

Author

Listed:
  • Saralees Nadarajah

Abstract

Historically, the normal variance model has been used to describe stock return distributions. This model is based on taking the conditional stock return distribution to be normal with its variance itself being a random variable. The form of the actual stock return distribution will depend on the distribution for the variance. In practice, the distributions chosen for the variance appear to be very limited. In this note, we derive a comprehensive collection of formulas for the actual stock return distribution, covering some sixteen flexible families. The corresponding estimation procedures are derived by the method of moments and the method of maximum likelihood. We feel that this work could serve as a useful reference and lead to improved modelling with respect to stock market returns.

Suggested Citation

  • Saralees Nadarajah, 2012. "Models for stock returns," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 411-424, February.
  • Handle: RePEc:taf:quantf:v:12:y:2012:i:3:p:411-424
    DOI: 10.1080/14697680902855384
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697680902855384
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680902855384?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
    3. Juuso Toyli & Marko Sysi-aho & Kimmo Kaski, 2004. "Models of asset returns: changes of pattern from high to low event frequency," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 373-382.
    4. McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 69(2), pages 427-428, October.
    5. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    6. McCulloch, J Huston, 1997. "Measuring Tail Thickness to Estimate the Stable Index Alpha: A Critique," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 74-81, January.
    7. Linden, Mikael, 2001. "A Model for Stock Return Distribution," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 6(2), pages 159-169, April.
    8. Andersson, Jonas, 2001. "On the Normal Inverse Gaussian Stochastic Volatility Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 44-54, January.
    9. Y. Malevergne & V. Pisarenko & D. Sornette, 2005. "Empirical distributions of stock returns: between the stretched exponential and the power law?," Quantitative Finance, Taylor & Francis Journals, vol. 5(4), pages 379-401.
    10. Efthymios G. Tsionas, 2000. "Posterior analysis, prediction and reliability in three-parameter weibull distributions," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 29(7), pages 1435-1449, January.
    11. Roman Liesenfeld & Robert C. Jung, 2000. "Stochastic volatility models: conditional normality versus heavy-tailed distributions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 137-160.
    12. Praetz, Peter D, 1972. "The Distribution of Share Price Changes," The Journal of Business, University of Chicago Press, vol. 45(1), pages 49-55, January.
    13. Aase, Knut K., 2000. "An equilibrium asset pricing model based on Lévy processes: relations to stochastic volatility, and the survival hypothesis," Insurance: Mathematics and Economics, Elsevier, vol. 27(3), pages 345-363, December.
    14. Gillemot, L. & Töyli, J. & Kertesz, J. & Kaski, K., 2000. "Time-independent models of asset returns revisited," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 282(1), pages 304-324.
    15. Heston, Steven L, 1993. "Invisible Parameters in Option Prices," Journal of Finance, American Finance Association, vol. 48(3), pages 933-947, July.
    16. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    17. Baixauli, J. Samuel & Alvarez, Susana, 2004. "Analysis of the conditional stock-return distribution under incomplete specification," European Journal of Operational Research, Elsevier, vol. 155(2), pages 276-283, June.
    18. Silva, A. Christian & Prange, Richard E. & Yakovenko, Victor M., 2004. "Exponential distribution of financial returns at mesoscopic time lags: a new stylized fact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 227-235.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Martin Katz & Michael J Bommarito II & Tyler Soellinger & James Ming Chen, 2015. "Law on the Market? Abnormal Stock Returns and Supreme Court Decision-Making," Papers 1508.05751, arXiv.org, revised May 2017.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suárez-García, Pablo & Gómez-Ullate, David, 2013. "Scaling, stability and distribution of the high-frequency returns of the Ibex35 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1409-1417.
    2. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    3. Luiz Vitiello & Ivonia Rebelo, 2015. "A note on the pricing of multivariate contingent claims under a transformed-gamma distribution," Review of Derivatives Research, Springer, vol. 18(3), pages 291-300, October.
    4. Göncü, Ahmet & Karahan, Mehmet Oğuz & Kuzubaş, Tolga Umut, 2016. "A comparative goodness-of-fit analysis of distributions of some Lévy processes and Heston model to stock index returns," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 69-83.
    5. Paolella, Marc S. & Polak, Paweł, 2015. "COMFORT: A common market factor non-Gaussian returns model," Journal of Econometrics, Elsevier, vol. 187(2), pages 593-605.
    6. Peter Christoffersen & Redouane Elkamhi & Bruno Feunou & Kris Jacobs, 2010. "Option Valuation with Conditional Heteroskedasticity and Nonnormality," The Review of Financial Studies, Society for Financial Studies, vol. 23(5), pages 2139-2183.
    7. Pablo Su'arez-Garc'ia & David G'omez-Ullate, 2012. "Scaling, stability and distribution of the high-frequency returns of the IBEX35 index," Papers 1208.0317, arXiv.org.
    8. Massing, Till & Ramos, Arturo, 2021. "Student’s t mixture models for stock indices. A comparative study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    9. Bandi, Federico M. & Nguyen, Thong H., 2003. "On the functional estimation of jump-diffusion models," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 293-328.
    10. Naumoski, Aleksandar & Gaber, Stevan & Gaber-Naumoska, Vasilka, 2017. "Empirical Distribution Of Stock Returns Of Southeast European Emerging Markets," UTMS Journal of Economics, University of Tourism and Management, Skopje, Macedonia, vol. 8(2), pages 67-77.
    11. Rui Vilela Mendes & M. J. Oliveira, 2006. "A data-reconstructed fractional volatility model," Papers math/0602013, arXiv.org, revised Jun 2007.
    12. López Martín, María del Mar & García, Catalina García & García Pérez, José, 2012. "Treatment of kurtosis in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2032-2045.
    13. Göncü, Ahmet & Yang, Hao, 2016. "Variance-Gamma and Normal-Inverse Gaussian models: Goodness-of-fit to Chinese high-frequency index returns," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 279-292.
    14. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    15. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    16. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
    17. Kevin Fergusson & Eckhard Platen, 2006. "On the Distributional Characterization of Daily Log-Returns of a World Stock Index," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 19-38.
    18. Oliver X. Li & Weiping Li, 2015. "Hedging jump risk, expected returns and risk premia in jump-diffusion economies," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 873-888, May.
    19. Madan, Dilip B. & Wang, King, 2016. "Nonrandom price movements," Finance Research Letters, Elsevier, vol. 17(C), pages 103-109.
    20. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:12:y:2012:i:3:p:411-424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.