IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Empirical distributions of stock returns: between the stretched exponential and the power law?

Listed author(s):
  • Y. Malevergne
  • V. Pisarenko
  • D. Sornette

A large consensus now seems to take for granted that the distributions of empirical returns of financial time series are regularly varying, with a tail exponent b close to 3. We develop a battery of new non-parametric and parametric tests to characterize the distributions of empirical returns of moderately large financial time series, with application to 100 years of daily returns of the Dow Jones Industrial Average, to 1 year of 5-min returns of the Nasdaq Composite index and to 17 years of 1-min returns of the Standard & Poor's 500. We propose a parametric representation of the tail of the distributions of returns encompassing both a regularly varying distribution in one limit of the parameters and rapidly varying distributions of the class of the stretched-exponential (SE) and the log-Weibull or Stretched Log-Exponential (SLE) distributions in other limits. Using the method of nested hypothesis testing (Wilks' theorem), we conclude that both the SE distributions and Pareto distributions provide reliable descriptions of the data but are hardly distinguishable for sufficiently high thresholds. Based on the discovery that the SE distribution tends to the Pareto distribution in a certain limit, we demonstrate that Wilks' test of nested hypothesis still works for the non-exactly nested comparison between the SE and Pareto distributions. The SE distribution is found to be significantly better over the whole quantile range but becomes unnecessary beyond the 95% quantiles compared with the Pareto law. Similar conclusions hold for the log-Weibull model with respect to the Pareto distribution, with a noticeable exception concerning the very-high-frequency data. Summing up all the evidence provided by our tests, it seems that the tails ultimately decay slower than any SE but probably faster than power laws with reasonable exponents. Thus, from a practical viewpoint, the log-Weibull model, which provides a smooth interpolation between SE and PD, can be considered as an appropriate approximation of the sample distributions.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Quantitative Finance.

Volume (Year): 5 (2005)
Issue (Month): 4 ()
Pages: 379-401

in new window

Handle: RePEc:taf:quantf:v:5:y:2005:i:4:p:379-401
DOI: 10.1080/14697680500151343
Contact details of provider: Web page:

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:5:y:2005:i:4:p:379-401. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.