IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v18y1999i4p417-439.html
   My bibliography  Save this article

A bayesian approach to dynamic tobit models

Author

Listed:
  • Steven Wei

Abstract

This paper develops a posterior simulation method for a dynamic Tobit model. The major obstacle rooted in such a problem lies in high dimensional integrals, induced by dependence among censored observations, in the likelihood function. The primary contribution of this study is to develop a practical and efficient sampling scheme for the conditional posterior distributions of the censored (i.e., unobserved) data, so that the Gibbs sampler with the data augmentation algorithm is successfully applied. The substantial differences between this approach and some existing methods are highlighted. The proposed simulation method is investigated by means of a Monte Carlo study and applied to a regression model of Japanese exports of passenger cars to the U.S. subject to a non-tariff trade barrier.

Suggested Citation

  • Steven Wei, 1999. "A bayesian approach to dynamic tobit models," Econometric Reviews, Taylor & Francis Journals, vol. 18(4), pages 417-439.
  • Handle: RePEc:taf:emetrv:v:18:y:1999:i:4:p:417-439
    DOI: 10.1080/07474939908800353
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/07474939908800353
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474939908800353?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Peristiani, Stavros, 1994. "An empirical investigation of the determinants of discount window borrowing: a disaggregate analysis," Journal of Banking & Finance, Elsevier, vol. 18(1), pages 183-197, January.
    2. Poirier, Dale J. & Ruud, Paul A., 1987. "Probit with Dependent Obervations," Department of Economics, Working Paper Series qt04f5m9t2, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    3. Dale J. Poirier & Paul A. Ruud, 1988. "Probit with Dependent Observations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 55(4), pages 593-614.
    4. Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 19-40, Suppl. De.
    5. Dale J. Poirier, 1995. "Intermediate Statistics and Econometrics: A Comparative Approach," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262161494, December.
    6. Hajivassiliou, Vassilis & McFadden, Daniel & Ruud, Paul, 1996. "Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 85-134.
    7. Amemiya, Takeshi, 1984. "Tobit models: A survey," Journal of Econometrics, Elsevier, vol. 24(1-2), pages 3-61.
    8. Dagenais, Marcel G., 1982. "The Tobit model with serial correlation," Economics Letters, Elsevier, vol. 10(3-4), pages 263-267.
    9. Chib, Siddhartha, 1992. "Bayes inference in the Tobit censored regression model," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 79-99.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023. "Forecasting with a panel Tobit model," Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
    2. Ordoñez-Callamand, Daniel & Hernandez-Leal, Juan D. & Villamizar-Villegas, Mauricio, 2018. "When multiple objectives meet multiple instruments: Identifying simultaneous monetary shocks," International Review of Economics & Finance, Elsevier, vol. 58(C), pages 78-101.
    3. Jean-Paul Chavas & Kwansoo Kim, 2006. "An econometric analysis of the effects of market liberalization on price dynamics and price volatility," Empirical Economics, Springer, vol. 31(1), pages 65-82, March.
    4. N. H. Chan & A. E. Brockwell, 2006. "Long-memory dynamic Tobit models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(5), pages 351-367.
    5. Chavas, Jean-Paul & Kim, Kwansoo, 2005. "An Econometric Analysis of Price Dynamics in the Presence of a Price Floor: The Case of American Cheese," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 37(1), pages 21-35, April.
    6. George Monokroussos, 2013. "A Classical MCMC Approach to the Estimation of Limited Dependent Variable Models of Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 42(1), pages 71-105, June.
    7. Bykhovskaya, Anna & Duffy, James A., 2024. "The local to unity dynamic Tobit model," Journal of Econometrics, Elsevier, vol. 241(2).
    8. Hsieh, Ping-Hung & Yang, J. Jimmy, 2009. "A censored stochastic volatility approach to the estimation of price limit moves," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 337-351, March.
    9. Kim, Kwansoo & Chavas, Jean-Paul, 2002. "A Dynamic Analysis Of The Effects Of A Price Support Program On Price Dynamics And Price Volatility," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 27(2), pages 1-20, December.
    10. Luc Bauwens & Michel Lubrano, 2007. "Bayesian Inference in Dynamic Disequilibrium Models: An Application to the Polish Credit Market," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 469-486.
    11. Peter C. Austin, 2002. "Bayesian Extensions of the Tobit Model for Analyzing Measures of Health Status," Medical Decision Making, , vol. 22(2), pages 152-162, April.
    12. Dagne Getachew & Huang Yangxin, 2012. "Bayesian inference for a nonlinear mixed-effects Tobit model with multivariate skew-t distributions: application to AIDS studies," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-24, September.
    13. Anna Bykhovskaya & James A. Duffy, 2022. "The Local to Unity Dynamic Tobit Model," Papers 2210.02599, arXiv.org, revised May 2024.
    14. Jouchi Nakajima & Mike West, 2013. "Bayesian Analysis of Latent Threshold Dynamic Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 151-164, April.
    15. Diansheng Dong & Todd M. Schmit & Harry Kaiser, 2012. "Modelling household purchasing behaviour to analyse beneficial marketing strategies," Applied Economics, Taylor & Francis Journals, vol. 44(6), pages 717-725, February.
    16. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    17. Wei, Steven X., 2002. "A censored-GARCH model of asset returns with price limits," Journal of Empirical Finance, Elsevier, vol. 9(2), pages 197-223, March.
    18. Dong, Diansheng & Chung, Chanjin & Kaiser, Harry M., 2001. "Panel Data Double-Hurdle Model: An Application To Dairy Advertising," 2001 Annual meeting, August 5-8, Chicago, IL 20502, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    19. Kerem Tuzcuoglu, 2019. "Composite Likelihood Estimation of an Autoregressive Panel Probit Model with Random Effects," Staff Working Papers 19-16, Bank of Canada.
    20. James A. Duffy & Sophocles Mavroeidis & Sam Wycherley, 2022. "Cointegration with Occasionally Binding Constraints," Papers 2211.09604, arXiv.org, revised Feb 2025.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    2. Hajivassiliou, Vassilis A. & Ruud, Paul A., 1986. "Classical estimation methods for LDV models using simulation," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 40, pages 2383-2441, Elsevier.
    3. Vijverberg, Wim P. M., 1997. "Monte Carlo evaluation of multivariate normal probabilities," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 281-307.
    4. Arturo Estrella & Anthony P. Rodrigues, 1998. "Consistent covariance matrix estimation in probit models with autocorrelated errors," Staff Reports 39, Federal Reserve Bank of New York.
    5. Koop, Gary & Poirier, Dale J., 2004. "Bayesian variants of some classical semiparametric regression techniques," Journal of Econometrics, Elsevier, vol. 123(2), pages 259-282, December.
    6. Antunes, António & Bonfim, Diana & Monteiro, Nuno & Rodrigues, Paulo M.M., 2018. "Forecasting banking crises with dynamic panel probit models," International Journal of Forecasting, Elsevier, vol. 34(2), pages 249-275.
    7. Hiroyuki Takeshima & Rajendra Prasad Adhikari & Anjani Kumar, 2016. "Is Access to Tractor Service a Binding Constraint for Nepali Terai Farmers?," Working Papers id:9604, eSocialSciences.
    8. Sögner, Leopold, 2015. "Learning, convergence and economic constraints," Mathematical Social Sciences, Elsevier, vol. 75(C), pages 27-43.
    9. Slade, Margaret E., 1999. "Sticky prices in a dynamic oligopoly: An investigation of (s,S) thresholds," International Journal of Industrial Organization, Elsevier, vol. 17(4), pages 477-511, May.
    10. Wang, Honglin & Iglesias, Emma M. & Wooldridge, Jeffrey M., 2013. "Partial maximum likelihood estimation of spatial probit models," Journal of Econometrics, Elsevier, vol. 172(1), pages 77-89.
    11. de Jong, Robert M. & Woutersen, Tiemen, 2011. "Dynamic Time Series Binary Choice," Econometric Theory, Cambridge University Press, vol. 27(4), pages 673-702, August.
    12. Luc Bauwens & Michel Lubrano, 2007. "Bayesian Inference in Dynamic Disequilibrium Models: An Application to the Polish Credit Market," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 469-486.
    13. Leonie Sundmacher, 2012. "The effect of health shocks on smoking and obesity," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 13(4), pages 451-460, August.
    14. Michael P. Keane, 1989. "A computationally practical simulation estimator for panel data, with applications to labor supply and real wage movement over the business cycle," Discussion Paper / Institute for Empirical Macroeconomics 16, Federal Reserve Bank of Minneapolis.
    15. Hausman, Jerry A. & Lo, Andrew W. & MacKinlay, A. Craig, 1992. "An ordered probit analysis of transaction stock prices," Journal of Financial Economics, Elsevier, vol. 31(3), pages 319-379, June.
    16. Nissilä, Wilma, 2020. "Probit based time series models in recession forecasting – A survey with an empirical illustration for Finland," BoF Economics Review 7/2020, Bank of Finland.
    17. Michael P. Leung, 2019. "Inference in Models of Discrete Choice with Social Interactions Using Network Data," Papers 1911.07106, arXiv.org.
    18. John Geweke, 1991. "Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments," Staff Report 148, Federal Reserve Bank of Minneapolis.
    19. Rabovič, Renata & Čížek, Pavel, 2023. "Estimation of spatial sample selection models: A partial maximum likelihood approach," Journal of Econometrics, Elsevier, vol. 232(1), pages 214-243.
    20. Javier Gómez, 2007. "Changes in the Informational Content of the Spread: Is Monetary Policy Becoming Less Effective?," Faculty Working Papers 05/07, School of Economics and Business Administration, University of Navarra.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:18:y:1999:i:4:p:417-439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.