IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v48y2016i9p799-815.html
   My bibliography  Save this article

Geographical disaggregation of sectoral inflation. Econometric modelling of the Euro area and Spanish economies

Author

Listed:
  • Gabriel Pino
  • J. D. Tena
  • Antoni Espasa

Abstract

This article studies the performance of different modelling strategies for 969 and 600 monthly price indexes disaggregated by sectors and geographical areas in Spain, regions and in the Euro Area 12 (EA12) countries. We also provide, by means of spatial bi-dimensional vector equilibrium correction models for all pairs of prices between neighbours, a description of spatial cointegration restrictions that could be useful for understanding price setting within an economy. We study the relevance of the regional disaggregation by using the proposed models to forecast the corresponding headline inflation and testing whether it is more accurate than alternative forecasts based on aggregated models. The results for Spain show that this is the case. Country disaggregation forecasts are also reliable for the EA12, but only because derived headline inflation forecasting is not significantly worse than alternative forecasts. The models in this article can be used for competitive analysis and other macro and regional analysis.

Suggested Citation

  • Gabriel Pino & J. D. Tena & Antoni Espasa, 2016. "Geographical disaggregation of sectoral inflation. Econometric modelling of the Euro area and Spanish economies," Applied Economics, Taylor & Francis Journals, vol. 48(9), pages 799-815, February.
  • Handle: RePEc:taf:applec:v:48:y:2016:i:9:p:799-815
    DOI: 10.1080/00036846.2015.1088141
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2015.1088141
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036846.2015.1088141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Franses, Philip Hans, 1991. "Seasonality, non-stationarity and the forecasting of monthly time series," International Journal of Forecasting, Elsevier, vol. 7(2), pages 199-208, August.
    2. Juan de Dios Tena & Antoni Espasa & Gabriel Pino, 2010. "Forecasting Spanish Inflation Using the Maximum Disaggregation Level by Sectors and Geographical Areas," International Regional Science Review, , vol. 33(2), pages 181-204, April.
    3. Joseph Beaulieu, J. & Miron, Jeffrey A., 1993. "Seasonal unit roots in aggregate U.S. data," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 305-328.
    4. Hendry, David F. & Hubrich, Kirstin, 2011. "Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 216-227.
    5. Hendry, David F., 2006. "Robustifying forecasts from equilibrium-correction systems," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 399-426.
    6. Aron, Janine & Muellbauer, John, 2012. "Improving forecasting in an emerging economy, South Africa: Changing trends, long run restrictions and disaggregation," International Journal of Forecasting, Elsevier, vol. 28(2), pages 456-476.
    7. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
    8. Giacomini, Raffaella & Granger, Clive W. J., 2004. "Aggregation of space-time processes," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
    9. Espasa, Antoni & Mayo-Burgos, Iván, 2013. "Forecasting aggregates and disaggregates with common features," International Journal of Forecasting, Elsevier, vol. 29(4), pages 718-732.
    10. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    11. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    12. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501, Decembrie.
    13. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
    14. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasan Engin Duran & Burak Dindaroğlu, 2021. "Regional inflation persistence in Turkey," Growth and Change, Wiley Blackwell, vol. 52(1), pages 460-491, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pino, Gabriel & Tena Horrillo, Juan de Dios & Espasa, Antoni, 2013. "Forecasting disaggregates by sectors and regions : the case of inflation in the euro area and Spain," DES - Working Papers. Statistics and Econometrics. WS ws130807, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Schanne, N. & Wapler, R. & Weyh, A., 2010. "Regional unemployment forecasts with spatial interdependencies," International Journal of Forecasting, Elsevier, vol. 26(4), pages 908-926, October.
    3. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
    4. Cobb, Marcus P A, 2018. "Improving Underlying Scenarios for Aggregate Forecasts: A Multi-level Combination Approach," MPRA Paper 88593, University Library of Munich, Germany.
    5. Carlomagno, Guillermo & Espasa, Antoni, 2014. "The pairwise approach to model a large set of disaggregates with common trends," DES - Working Papers. Statistics and Econometrics. WS ws141309, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Carlomagno, Guillermo & Espasa, Antoni, 2016. "Discovering common trends in a large set of disaggregates: statistical procedures and their properties," DES - Working Papers. Statistics and Econometrics. WS ws1519, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Carlomagno, Guillermo & Espasa, Antoni, 2015. "Forecasting a large set of disaggregates with common trends and outliers," DES - Working Papers. Statistics and Econometrics. WS ws1518, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
    9. Glocker, Christian & Kaniovski, Serguei, 2020. "Structural modeling and forecasting using a cluster of dynamic factor models," MPRA Paper 101874, University Library of Munich, Germany.
    10. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    11. Guillermo Carlomagno & Antoni Espasa, 2021. "Discovering Specific Common Trends in a Large Set of Disaggregates: Statistical Procedures, their Properties and an Empirical Application," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(3), pages 641-662, June.
    12. Alberto Baffigi & Roberto Golinelli & Giuseppe Parigi, 2002. "Real-time GDP forecasting in the euro area," Temi di discussione (Economic working papers) 456, Bank of Italy, Economic Research and International Relations Area.
    13. Pami Dua & Lokendra Kumawat, 2005. "Modelling and Forecasting Seasonality in Indian Macroeconomic Time Series," Working papers 136, Centre for Development Economics, Delhi School of Economics.
    14. Christian Glocker & Serguei Kaniovski, 2022. "Macroeconometric forecasting using a cluster of dynamic factor models," Empirical Economics, Springer, vol. 63(1), pages 43-91, July.
    15. Luis A. Gil-Alana & Juncal Cunado & Fernando Perez de Gracia, 2008. "Tourism in the Canary Islands: forecasting using several seasonal time series models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(7), pages 621-636.
    16. Nicoletta Pashourtidou & Christos Papamichael & Charalampos Karagiannakis, 2018. "Forecasting economic activity in sectors of the Cypriot economy," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 12(2), pages 24-66, December.
    17. Larson, William D. & Sinclair, Tara M., 2022. "Nowcasting unemployment insurance claims in the time of COVID-19," International Journal of Forecasting, Elsevier, vol. 38(2), pages 635-647.
    18. Konstantin Kuck & Karsten Schweikert, 2021. "Forecasting Baden‐Württemberg's GDP growth: MIDAS regressions versus dynamic mixed‐frequency factor models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 861-882, August.
    19. Camila Figueroa S. & Michael Pedersen, 2019. "A system for forecasting Chilean cash demand – the role of forecast combinations," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 22(2), pages 040-068, August.
    20. Michael Zhemkov, 2021. "Nowcasting Russian GDP using forecast combination approach," International Economics, CEPII research center, issue 168, pages 10-24.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:48:y:2016:i:9:p:799-815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.