IDEAS home Printed from https://ideas.repec.org/a/spr/sorede/v36y2025i3d10.1134_s1075700725700029.html
   My bibliography  Save this article

Results for Short-Term Forecasting of Economic Dynamics Based on Bridge Equations and Time Series Extrapolation

Author

Listed:
  • M. S. Gusev

    (Institute of Economic Forecasting, Russian Academy of Sciences)

  • V. S. Ustinov

    (Institute of Economic Forecasting, Russian Academy of Sciences)

  • R. E. Rakoch

    (Institute of Economic Forecasting, Russian Academy of Sciences)

Abstract

The development of methods and models for forecasting economic performance and their diversity in applied economic forecasting often make it somewhat difficult to interpret forecast estimates of the same indicators obtained by various toolkits. This article describes the role of short-term forecasting in the system of models for RF national economic forecasting developed at the IEF RAS. Based on the analysis of international and Russian experience in short-term forecasting of macroeconomic indicators, as well as of the accuracy provided by IEF RAS short-term forecasts, the possibilities and limitations of using short-term GDP forecasting based on the extrapolation of high-frequency time series are demonstrated. Comparison of the accuracy of the IEF RAS short-term forecast with the consensus forecasts of the Institute “Development Center” of HSE University and the Bank of Russia shows high predictive abilities (up to a year ahead) of small-size GDP forecasting models based on bridge equations and extrapolation of high-frequency time series.

Suggested Citation

  • M. S. Gusev & V. S. Ustinov & R. E. Rakoch, 2025. "Results for Short-Term Forecasting of Economic Dynamics Based on Bridge Equations and Time Series Extrapolation," Studies on Russian Economic Development, Springer, vol. 36(3), pages 304-312, June.
  • Handle: RePEc:spr:sorede:v:36:y:2025:i:3:d:10.1134_s1075700725700029
    DOI: 10.1134/S1075700725700029
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1134/S1075700725700029
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1134/S1075700725700029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heiner Mikosch & Laura Solanko, 2019. "Forecasting Quarterly Russian GDP Growth with Mixed-Frequency Data," Russian Journal of Money and Finance, Bank of Russia, vol. 78(1), pages 19-35, March.
    2. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
    3. Bantis, Evripidis & Clements, Michael P. & Urquhart, Andrew, 2023. "Forecasting GDP growth rates in the United States and Brazil using Google Trends," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1909-1924.
    4. Kitchen, John & Monaco, Ralph, 2003. "Real-Time Forecasting in Practice: The U.S. Treasury Staff's Real-Time GDP Forecast System," MPRA Paper 21068, University Library of Munich, Germany, revised Oct 2003.
    5. Giannone, Domenico & Lenza, Michele & Momferatou, Daphne & Onorante, Luca, 2014. "Short-term inflation projections: A Bayesian vector autoregressive approach," International Journal of Forecasting, Elsevier, vol. 30(3), pages 635-644.
    6. repec:hal:journl:peer-00844811 is not listed on IDEAS
    7. A. A. Shirov & A. A. Yantovskii, 2017. "RIM interindustry macroeconomic model: Development of instruments under current economic conditions," Studies on Russian Economic Development, Springer, vol. 28(3), pages 241-252, May.
    8. S. V. Smirnov & N. V. Kondrashov & A. S. Kachur, 2024. "Macroeconomic forecasting and macroeconomic forecasts," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 2.
    9. Yanqing Yang & Xingcheng Xu & Jinfeng Ge & Yan Xu, 2024. "Machine Learning for Economic Forecasting: An Application to China's GDP Growth," Papers 2407.03595, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katerina Arnostova & David Havrlant & Luboš Rùžièka & Peter Tóth, 2011. "Short-Term Forecasting of Czech Quarterly GDP Using Monthly Indicators," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 61(6), pages 566-583, December.
    2. Elena Angelini & Gonzalo Camba‐Mendez & Domenico Giannone & Lucrezia Reichlin & Gerhard Rünstler, 2011. "Short‐term forecasts of euro area GDP growth," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 25-44, February.
    3. Antonello D'Agostino & Kieran McQuinn & Derry O’Brien, 2012. "Nowcasting Irish GDP," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2012(2), pages 21-31.
    4. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    5. K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze & G. Rünstler, 2008. "Short-term forecasting of GDP using large monthly datasets – A pseudo real-time forecast evaluation exercise," Working Paper Research 133, National Bank of Belgium.
    6. Antonello D’Agostino & Michele Modugno & Chiara Osbat, 2017. "A Global Trade Model for the Euro Area," International Journal of Central Banking, International Journal of Central Banking, vol. 13(4), pages 1-34, December.
    7. K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze & G. Rünstler, 2008. "Short-term forecasting of GDP using large monthly datasets – A pseudo real-time forecast evaluation exercise," Working Paper Research 133, National Bank of Belgium.
    8. Troy D. Matheson, 2014. "New indicators for tracking growth in real time," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 51-71.
    9. Laurent Ferrara & Dominique Guégan & Patrick Rakotomarolahy, 2010. "GDP nowcasting with ragged-edge data: a semi-parametric modeling," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 186-199.
    10. Laurent Ferrara & Dominique Guegan & Patrick Rakotomarolahy, 2010. "GDP nowcasting with ragged-edge data: a semi-parametric modeling," Post-Print halshs-00460461, HAL.
    11. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
    12. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    13. Rusnák, Marek, 2016. "Nowcasting Czech GDP in real time," Economic Modelling, Elsevier, vol. 54(C), pages 26-39.
    14. Domenico Giannone & Lucrezia Reichlin & David Small, 2008. "Nowcasting: the real time informational content of macroeconomic data releases," ULB Institutional Repository 2013/6409, ULB -- Universite Libre de Bruxelles.
    15. Liebermann, Joelle, 2012. "Real-time forecasting in a data-rich environment," MPRA Paper 39452, University Library of Munich, Germany.
    16. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    17. Michael Zhemkov, 2021. "Nowcasting Russian GDP using forecast combination approach," International Economics, CEPII research center, issue 168, pages 10-24.
    18. Lamprou, Dimitra, 2016. "Nowcasting GDP in Greece: The impact of data revisions and forecast origin on model selection and performance," The Journal of Economic Asymmetries, Elsevier, vol. 14(PA), pages 93-102.
    19. Jason Angelopoulos, 2017. "Creating and assessing composite indicators: Dynamic applications for the port industry and seaborne trade," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(1), pages 126-159, March.
    20. Soybilgen, Barış & Yazgan, Ege, 2018. "Evaluating nowcasts of bridge equations with advanced combination schemes for the Turkish unemployment rate," Economic Modelling, Elsevier, vol. 72(C), pages 99-108.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sorede:v:36:y:2025:i:3:d:10.1134_s1075700725700029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.