IDEAS home Printed from https://ideas.repec.org/a/spr/sochwe/v32y2009i1p157-168.html
   My bibliography  Save this article

Three-candidate competition when candidates have valence: the base case

Author

Listed:
  • Haldun Evrenk

    ()

Abstract

We study the Nash Equilibrium of three-candidate unidimensional spatial competition when candidates differ in their non-policy characteristics (valence). If the voters' policy preferences are represented by a strictly convex loss function, and if the voter density is unimodal and symmetric, then a unique, modulo symmetry, local Nash Equilibrium exists under fairly plausible conditions. The global Nash Equilibrium, however, exists when only one candidate has a valence advantage (or disadvantage) while the other two candidates have the same valence
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Haldun Evrenk, 2009. "Three-candidate competition when candidates have valence: the base case," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 32(1), pages 157-168, January.
  • Handle: RePEc:spr:sochwe:v:32:y:2009:i:1:p:157-168
    DOI: 10.1007/s00355-008-0306-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00355-008-0306-z
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Martin J. Osborne, 1995. "Spatial Models of Political Competition under Plurality Rule: A Survey of Some Explanations of the Number of Candidates and the Positions They Take," Canadian Journal of Economics, Canadian Economics Association, vol. 28(2), pages 261-301, May.
    2. Norman Schofield, 2007. "The Mean Voter Theorem: Necessary and Sufficient Conditions for Convergent Equilibrium," Review of Economic Studies, Oxford University Press, vol. 74(3), pages 965-980.
    3. repec:cup:apsrev:v:57:y:1963:i:02:p:368-377_24 is not listed on IDEAS
    4. Hug, Simon, 1995. "Third Parties in Equilibrium," Public Choice, Springer, vol. 82(1-2), pages 159-180, January.
    5. Lin, Tse-Min & Enelow, James M & Dorussen, Han, 1999. "Equilibrium in Multicandidate Probabilistic Spatial Voting," Public Choice, Springer, vol. 98(1-2), pages 59-82, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haldun Evrenk & Dmitriy Kha, 2011. "Three-candidate spatial competition when candidates have valence: stochastic voting," Public Choice, Springer, vol. 147(3), pages 421-438, June.
    2. Haldun Evrenk & Chien-Yuan Sher, 2015. "Social interactions in voting behavior: distinguishing between strategic voting and the bandwagon effect," Public Choice, Springer, vol. 162(3), pages 405-423, March.
    3. Dimitrios Xefteris, 2014. "Mixed equilibriums in a three-candidate spatial model with candidate valence," Public Choice, Springer, vol. 158(1), pages 101-120, January.
    4. Evrenk, Haldun, 2010. "Three-Candidate Spatial Competition When Candidates Have Valence: Asymmetric Voter Density and Plurality Maximization," Working Papers 2010-1, Suffolk University, Department of Economics.
    5. Evrenk, Haldun, 2011. "Why a clean politician supports dirty politics: A game-theoretical explanation for the persistence of political corruption," Journal of Economic Behavior & Organization, Elsevier, vol. 80(3), pages 498-510.

    More about this item

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • H89 - Public Economics - - Miscellaneous Issues - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:32:y:2009:i:1:p:157-168. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.