IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Equilibrium in Multicandidate Probabilistic Spatial Voting

  • Lin, Tse-Min
  • Enelow, James M
  • Dorussen, Han
Registered author(s):

    This paper presents a multicandidate spatial model of probabilistic voting in which voter utility functions contain a random element specific to each candidate. The model assumes no abstentions, sincere voting, and the maximization of expected vote by each candidate. The authors derive a sufficient condition for concavity of the candidate expected vote function with which the existence of equilibrium is related to the degree of voter uncertainty. They show that, under concavity, convergent equilibrium exists at a 'minimum-sum point' at which total distances from all voter ideal points are minimized. The authors then discuss the location of convergent equilibrium for various measures of distance. In their examples, computer analysis indicates that nonconvergent equilibria are only locally stable and disappear as voter uncertainty increases. Copyright 1999 by Kluwer Academic Publishers

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://journals.kluweronline.com/issn/0048-5829/contents
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Public Choice.

    Volume (Year): 98 (1999)
    Issue (Month): 1-2 (January)
    Pages: 59-82

    as
    in new window

    Handle: RePEc:kap:pubcho:v:98:y:1999:i:1-2:p:59-82
    Contact details of provider: Web page: http://www.springerlink.com/link.asp?id=100332

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:kap:pubcho:v:98:y:1999:i:1-2:p:59-82. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.