IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Lattices of choice functions and consensus problems

  • Bernard Monjardet

    ()

  • Vololonirina Raderanirina

    ()

In this paper we consider the three classes of choice functions satisfying the three significant axioms called heredity (H), concordance (C) and outcast (O). We show that the set of choice functions satisfying any one of these axioms is a lattice, and we study the properties of these lattices. The lattice of choice functions satisfying (H) is distributive, whereas the lattice of choice functions verifying (C) is atomistic and lower bounded, and so has many properties. On the contrary, the lattice of choice functions satisfying (O) is not even ranked. Then using results of the axiomatic and metric latticial theories of consensus as well as the properties of our three lattices of choice functions, we get results to aggregate profiles of such choice functions into one (or several) collective choice function(s). Copyright Springer-Verlag 2004

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1007/s00355-003-0251-9
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Springer in its journal Social Choice and Welfare.

Volume (Year): 23 (2004)
Issue (Month): 3 (December)
Pages: 349-382

as
in new window

Handle: RePEc:spr:sochwe:v:23:y:2004:i:3:p:349-382
Contact details of provider: Web page: http://link.springer.de/link/service/journals/00355/index.htm

Order Information: Web: http://link.springer.de/orders.htm

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Monjardet, B., 1990. "Arrowian characterizations of latticial federation consensus functions," Mathematical Social Sciences, Elsevier, vol. 20(1), pages 51-71, August.
  2. Johnson, Mark R. & Dean, Richard A., 2001. "Locally complete path independent choice functions and their lattices," Mathematical Social Sciences, Elsevier, vol. 42(1), pages 53-87, July.
  3. Pierre Barthelemy, Jean & Monjardet, Bernard, 1981. "The median procedure in cluster analysis and social choice theory," Mathematical Social Sciences, Elsevier, vol. 1(3), pages 235-267, May.
  4. Koshevoy, Gleb A., 1999. "Choice functions and abstract convex geometries," Mathematical Social Sciences, Elsevier, vol. 38(1), pages 35-44, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:23:y:2004:i:3:p:349-382. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn)

or (Christopher F Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.