IDEAS home Printed from
   My bibliography  Save this paper

The Duality Between the Anti-Exchange Closure Operators and the Path Independent Choice Operators on a Finite Set


  • Monjardet, B.
  • Raderanirina, V.


In this paper, we show that the correspondence discovered by Koshevoy (1999) and, Johnson and Dean (1998) between anti-exchange closure operators and path independent choice operators is a duality between two semilattices of such operators. Then we use this duality to obtain old and new results concerning the "ordinal" representations of choice functions from the theory of anti-exchange closure operators.

Suggested Citation

  • Monjardet, B. & Raderanirina, V., 1999. "The Duality Between the Anti-Exchange Closure Operators and the Path Independent Choice Operators on a Finite Set," Papiers d'Economie Mathématique et Applications 1999-68, Université Panthéon-Sorbonne (Paris 1).
  • Handle: RePEc:fth:pariem:1999-68

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    1. Koshevoy, Gleb A., 1999. "Choice functions and abstract convex geometries," Mathematical Social Sciences, Elsevier, vol. 38(1), pages 35-44, July.
    2. Edelman, Paul H., 1997. "A note on voting," Mathematical Social Sciences, Elsevier, vol. 34(1), pages 37-50, August.
    3. Amartya K. Sen, 1971. "Choice Functions and Revealed Preference," Review of Economic Studies, Oxford University Press, vol. 38(3), pages 307-317.
    4. Richard A. Dean & Mark R. Johnson, 2000. "Locally Complete Path Independent Choice Functions and Their Lattices," Econometric Society World Congress 2000 Contributed Papers 0622, Econometric Society.
    5. Plott, Charles R, 1973. "Path Independence, Rationality, and Social Choice," Econometrica, Econometric Society, vol. 41(6), pages 1075-1091, November.
    6. Caspard, N. & Monjardet, B., 2000. "The Lattice of Closure Systems, Closure Operators and Implicational Systems on a Finite Set : A Survey," Papiers d'Economie Mathématique et Applications 2000.120, Université Panthéon-Sorbonne (Paris 1).
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Monjardet, Bernard, 2003. "The presence of lattice theory in discrete problems of mathematical social sciences. Why," Mathematical Social Sciences, Elsevier, vol. 46(2), pages 103-144, October.
    2. Bernard Monjardet, 2007. "Some Order Dualities In Logic, Games And Choices," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-12.
    3. Danilov, V. & Koshevoy, G., 2006. "A new characterization of the path independent choice functions," Mathematical Social Sciences, Elsevier, vol. 51(2), pages 238-245, March.
    4. Matthew Ryan, 2010. "Mixture sets on finite domains," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 33(2), pages 139-147, November.
    5. Gabriela Bordalo & Nathalie Caspard & Bernard Monjardet, 2009. "Going down in (semi)lattices of finite Moore families and convex geometries," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00308785, HAL.

    More about this item



    JEL classification:

    • E65 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Studies of Particular Policy Episodes
    • F01 - International Economics - - General - - - Global Outlook


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:pariem:1999-68. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.