Predicting gasoline shortage during disasters using social media
Author
Abstract
Suggested Citation
DOI: 10.1007/s00291-019-00559-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Rajagopal, 2014.
"The Human Factors,"
Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249,
Palgrave Macmillan.
- Rajagopal, 2013. "The Human Factors," Palgrave Macmillan Books, in: Managing Social Media and Consumerism, chapter 9, pages 173-194, Palgrave Macmillan.
- Zhu, Bangzhu & Wei, Yiming, 2013. "Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology," Omega, Elsevier, vol. 41(3), pages 517-524.
- Pai, Ping-Feng & Lin, Chih-Sheng, 2005. "A hybrid ARIMA and support vector machines model in stock price forecasting," Omega, Elsevier, vol. 33(6), pages 497-505, December.
- Grün, Bettina & Hornik, Kurt, 2011. "topicmodels: An R Package for Fitting Topic Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i13).
- Cadenas, Erasmo & Rivera, Wilfrido, 2010. "Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model," Renewable Energy, Elsevier, vol. 35(12), pages 2732-2738.
- Feinerer, Ingo & Hornik, Kurt & Meyer, David, 2008. "Text Mining Infrastructure in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i05).
- Panagiotopoulos, Panos & Barnett, Julie & Bigdeli, Alinaghi Ziaee & Sams, Steven, 2016. "Social media in emergency management: Twitter as a tool for communicating risks to the public," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 86-96.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Edwards, Dominiqueca R. & Idoko, Faith O. & Vogiatzis, Chrysafis & Davis, Lauren B. & Mirchandani, Pitu, 2023. "Determining optimal fuel delivery strategies under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
- Hugo T. Y. Yoshizaki & Irineu de Brito Junior & Celso Mitsuo Hino & Larrisa Limongi Aguiar & Maria Clara Rodrigues Pinheiro, 2020. "Relationship between Panic Buying and Per Capita Income during COVID-19," Sustainability, MDPI, vol. 12(23), pages 1-14, November.
- Walter J. Gutjahr & Nilay Noyan & Nico Vandaele & Luk N. Wassenhove, 2020. "Innovative approaches in humanitarian operations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(3), pages 585-589, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Stefano Sbalchiero & Maciej Eder, 2020. "Topic modeling, long texts and the best number of topics. Some Problems and solutions," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(4), pages 1095-1108, August.
- Daoud, Adel & Kohl, Sebastian, 2016. "How much do sociologists write about economic topics? Using big data to test some conventional views in economic sociology, 1890 to 2014," MPIfG Discussion Paper 16/7, Max Planck Institute for the Study of Societies.
- Holand, Øystein & Contiero, Barbara & Næss, Marius W. & Cozzi, Giulio, 2024. "“The Times They Are A-Changin' “ – research trends and perspectives of reindeer pastoralism – A review using text mining and topic modelling," Land Use Policy, Elsevier, vol. 136(C).
- Cho, Yung-Jan & Fu, Pei-Wen & Wu, Chi-Cheng, 2017. "Popular Research Topics in Marketing Journals, 1995–2014," Journal of Interactive Marketing, Elsevier, vol. 40(C), pages 52-72.
- Motta Queiroz, Mariza & Roque, Carlos & Moura, Filipe & Marôco, João, 2024. "Understanding the expectations of parents regarding their children's school commuting by public transport using latent Dirichlet Allocation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
- Guo, Wei & Liu, Qingfu & Luo, Zhidan & Tse, Yiuman, 2022. "Forecasts for international financial series with VMD algorithms," Journal of Asian Economics, Elsevier, vol. 80(C).
- João Guerreiro & Paulo Rita & Duarte Trigueiros, 2016. "A Text Mining-Based Review of Cause-Related Marketing Literature," Journal of Business Ethics, Springer, vol. 139(1), pages 111-128, November.
- Lehotský, Lukáš & Černoch, Filip & Osička, Jan & Ocelík, Petr, 2019. "When climate change is missing: Media discourse on coal mining in the Czech Republic," Energy Policy, Elsevier, vol. 129(C), pages 774-786.
- Doblinger, Claudia & Surana, Kavita & Li, Deyu & Hultman, Nathan & Anadón, Laura Díaz, 2022. "How do global manufacturing shifts affect long-term clean energy innovation? A study of wind energy suppliers," Research Policy, Elsevier, vol. 51(7).
- Andres, Maximilian & Bruttel, Lisa & Friedrichsen, Jana, 2023.
"How communication makes the difference between a cartel and tacit collusion: A machine learning approach,"
European Economic Review, Elsevier, vol. 152(C).
- Andres, Maximilian & Bruttel, Lisa & Friedrichsen, Jana, 2023. "How communication makes the difference between a cartel and tacit collusion: A machine learning approach," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 152, pages 1-1.
- Maximilian Andres & Lisa Bruttel & Jana Friedrichsen, 2022. "How Communication Makes the Difference between a Cartel and Tacit Collusion: A Machine Learning Approach," CESifo Working Paper Series 10024, CESifo.
- Maximilian Andres & Lisa Bruttel & Jana Friedrichsen, 2022. "How communication makes the difference between a cartel and tacit collusion: a machine learning approach," CEPA Discussion Papers 53, Center for Economic Policy Analysis.
- Maximilian Andres & Lisa Bruttel & Jana Friedrichsen, 2022. "How Communication Makes the Difference between a Cartel and Tacit Collusion: A Machine Learning Approach," Discussion Papers of DIW Berlin 2000, DIW Berlin, German Institute for Economic Research.
- Hudson Golino & Alexander P. Christensen & Robert Moulder & Seohyun Kim & Steven M. Boker, 2022. "Modeling Latent Topics in Social Media using Dynamic Exploratory Graph Analysis: The Case of the Right-wing and Left-wing Trolls in the 2016 US Elections," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 156-187, March.
- Sun, Katherine Qianwen & Slepian, Michael L., 2020. "The conversations we seek to avoid," Organizational Behavior and Human Decision Processes, Elsevier, vol. 160(C), pages 87-105.
- Rieger, Jonas & von Nordheim, Gerret, 2021. "corona100d: German-language Twitter dataset of the first 100 days after Chancellor Merkel addressed the coronavirus outbreak on TV," DoCMA Working Papers 4, TU Dortmund University, Dortmund Center for Data-based Media Analysis (DoCMA).
- Xiong, Tao & Li, Chongguang & Bao, Yukun, 2017. "Interval-valued time series forecasting using a novel hybrid HoltI and MSVR model," Economic Modelling, Elsevier, vol. 60(C), pages 11-23.
- Zhang, Junting & Liu, Haifei & Bai, Wei & Li, Xiaojing, 2024. "A hybrid approach of wavelet transform, ARIMA and LSTM model for the share price index futures forecasting," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).
- Garner, Benjamin & Thornton, Corliss & Luo Pawluk, Anita & Mora Cortez, Roberto & Johnston, Wesley & Ayala, Cesar, 2022. "Utilizing text-mining to explore consumer happiness within tourism destinations," Journal of Business Research, Elsevier, vol. 139(C), pages 1366-1377.
- Shreya Dubey & Marijn H. C. Meijers & Eline S. Smit & Edith G. Smit, 2024. "Beyond climate change? Environmental discourse on the planetary boundaries in Twitter networks," Climatic Change, Springer, vol. 177(5), pages 1-23, May.
- Anke Piepenbrink & Elkin Nurmammadov, 2015. "Topics in the literature of transition economies and emerging markets," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2107-2130, March.
- Christian WEISMAYER, 2022. "Applied Research in Quality of Life: A Computational Literature Review," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 17(3), pages 1433-1458, June.
- Kaijian He & Qian Yang & Lei Ji & Jingcheng Pan & Yingchao Zou, 2023. "Financial Time Series Forecasting with the Deep Learning Ensemble Model," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
More about this item
Keywords
Social media analytics; Gasoline shortage prediction modeling; Disaster management; Hybrid loss function; Hurricane Irma;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:42:y:2020:i:3:d:10.1007_s00291-019-00559-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.