IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v60y2023i2d10.1007_s12597-022-00613-0.html
   My bibliography  Save this article

Statistical brand switching model: an Hidden Markov approach

Author

Listed:
  • K. Kumaraswamy

    (Kaloji Narayana Rao University of Health Sciences)

  • N. Ch. Bhatracharyulu

    (Osmania University)

Abstract

Customer’s choice study described as the state of decisions and actions which influence the purchase behavior. The purchase process is influenced by inheritably hidden factors that create stimuli to purchase repeatedly or switching among the products. A statistical model is constructed to capture and quantify the relationships between the attitudes of the consumers. The statistical model used for the estimating the optimum possible sequence probabilities in repeat purchase and switching behavior.

Suggested Citation

  • K. Kumaraswamy & N. Ch. Bhatracharyulu, 2023. "Statistical brand switching model: an Hidden Markov approach," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 942-950, June.
  • Handle: RePEc:spr:opsear:v:60:y:2023:i:2:d:10.1007_s12597-022-00613-0
    DOI: 10.1007/s12597-022-00613-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-022-00613-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-022-00613-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. S. C. Ehrenberg, 1959. "The Pattern of Consumer Purchases," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 8(1), pages 26-41, March.
    2. Richard A. Colombo & Donald G. Morrison, 1989. "Note—A Brand Switching Model with Implications for Marketing Strategies," Marketing Science, INFORMS, vol. 8(1), pages 89-99.
    3. John F. Stewart, 1979. "The Beta Distribution as a Model of Behavior in Consumer Goods Markets," Management Science, INFORMS, vol. 25(9), pages 813-821, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Riebe, Erica & Wright, Malcolm & Stern, Philip & Sharp, Byron, 2014. "How to grow a brand: Retain or acquire customers?," Journal of Business Research, Elsevier, vol. 67(5), pages 990-997.
    2. Ehrenberg, Andrew S. C. & Uncles, Mark D. & Goodhardt, Gerald J., 2004. "Understanding brand performance measures: using Dirichlet benchmarks," Journal of Business Research, Elsevier, vol. 57(12), pages 1307-1325, December.
    3. Steenkamp, J-B.E.M. & Nijs, V.R. & Hanssens, D.M. & Dekimpe, M.G., 2002. "Competitive Reactions and the Cross-Sales Effects of Advertising and Promotion," ERIM Report Series Research in Management ERS-2002-20-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    4. R. Bentley & Michael O’Brien & Paul Ormerod, 2011. "Quality versus mere popularity: a conceptual map for understanding human behavior," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 10(2), pages 181-191, December.
    5. Gauthier Casteran & Polymeros Chrysochou & Lars Meyer-Waarden, 2019. "Brand loyalty evolution and the impact of category characteristics," Marketing Letters, Springer, vol. 30(1), pages 57-73, March.
    6. Halloran, Timothy J. & Lutz, Richard J., 2021. "Let's Give Them Something to Talk About: Which Social Media Engagements Predict Purchase Frequency?," Journal of Interactive Marketing, Elsevier, vol. 56(C), pages 83-95.
    7. Huang Rui & Perloff Jeffrey M & Villas-Boas Sofia B, 2006. "Effects of Sales on Brand Loyalty," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 4(1), pages 1-26, July.
    8. Martin, James & Nenycz-Thiel, Magda & Dawes, John & Tanusondjaja, Arry & Cohen, Justin & McColl, Bruce & Trinh, Giang, 2020. "Fundamental basket size patterns and their relation to retailer performance," Journal of Retailing and Consumer Services, Elsevier, vol. 54(C).
    9. Byun, Kyung-Ah (Kay) & Duhan, Dale F. & Dass, Mayukh, 2020. "The preservation of loyalty halo effects: An investigation of the post-product-recall behavior of loyal customers," Journal of Business Research, Elsevier, vol. 116(C), pages 163-175.
    10. Patrice Cailleba & Herbert Casteran, 2010. "Do Ethical Values Work? A Quantitative Study of the Impact of Fair Trade Coffee on Consumer Behavior," Journal of Business Ethics, Springer, vol. 97(4), pages 613-624, December.
    11. Anesbury, Zachary William & Talbot, Danielle & Day, Chanel Andrea & Bogomolov, Tim & Bogomolova, Svetlana, 2020. "The fallacy of the heavy buyer: Exploring purchasing frequencies of fresh fruit and vegetable categories," Journal of Retailing and Consumer Services, Elsevier, vol. 53(C).
    12. Prak, Dennis & Teunter, Ruud & Babai, Mohamed Zied & Boylan, John E. & Syntetos, Aris, 2021. "Robust compound Poisson parameter estimation for inventory control," Omega, Elsevier, vol. 104(C).
    13. Thomas Lux, 2020. "On the distribution of links in financial networks: structural heterogeneity and functional form," Empirical Economics, Springer, vol. 58(3), pages 1019-1053, March.
    14. Jackson, Tyrone W. & Perloff, Jeffrey M, 1996. "Personal computer brand loyalty," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt3w5958mx, Department of Agricultural & Resource Economics, UC Berkeley.
    15. Trinh, Giang & Wright, Malcolm J., 2022. "Predicting future consumer purchases in grocery retailing with the condensed Poisson lognormal model," Journal of Retailing and Consumer Services, Elsevier, vol. 64(C).
    16. Prak, Derk & Teunter, Rudolf & Babai, M. Z. & Syntetos, A. A. & Boylan, D, 2018. "Forecasting and Inventory Control with Compound Poisson Demand Using Periodic Demand Data," Research Report 2018010, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    17. Jeongwen Chiang & Ching-Fan Chung & Emily Cremers, 2001. "Promotions and the pattern of grocery shopping time," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(7), pages 801-819.
    18. Selçuk, B. & Özlük, Ö., 2013. "Optimal keyword bidding in search-based advertising with target exposure levels," European Journal of Operational Research, Elsevier, vol. 226(1), pages 163-172.
    19. Quante, R. & Fleischmann, M. & Meyr, H., 2009. "A Stochastic Dynamic Programming Approach to Revenue Management in a Make-to-Stock Production System," ERIM Report Series Research in Management ERS-2009-015-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    20. Kolassa, Stephan, 2016. "Evaluating predictive count data distributions in retail sales forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 788-803.

    More about this item

    Keywords

    Consumer behavior; Hidden Markov model; Loyalty; Repeated purchase; Switching pattern;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:60:y:2023:i:2:d:10.1007_s12597-022-00613-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.