IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v58y2020i3d10.1007_s00181-018-1569-6.html
   My bibliography  Save this article

On the distribution of links in financial networks: structural heterogeneity and functional form

Author

Listed:
  • Thomas Lux

    (University of Kiel)

Abstract

We investigate the distribution of links in three large data sets: one of these covering interbank loans in the electronic trading platform e-MID, and the other two covering a large part of the loans of banks to non-financial companies in the Spanish and Japanese economies, respectively. In contrast to all the previous literature, we do not assume homogeneity of the link distribution over time and across different categories of agents (banks, firms) but apply our hypothesized distributions as regression models. As it turns out, many of the tested sources of heterogeneity turn out to be significant regressors. For instance, we find pervasive time heterogeneity of link formation in all three data sets, and also heterogeneity for different categories of banks/firms that can be identified in the data as well as some explanatory power of balance sheet statistics in the case of the Japanese data set. Across all networks, the Negative Binomial model almost always outperforms all alternative models confirming its good performance as a model of economic count data in many previous applications.

Suggested Citation

  • Thomas Lux, 2020. "On the distribution of links in financial networks: structural heterogeneity and functional form," Empirical Economics, Springer, vol. 58(3), pages 1019-1053, March.
  • Handle: RePEc:spr:empeco:v:58:y:2020:i:3:d:10.1007_s00181-018-1569-6
    DOI: 10.1007/s00181-018-1569-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-018-1569-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-018-1569-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David C. Schmittlein & Albert C. Bemmaor & Donald G. Morrison, 1985. "Technical Note—Why Does the NBD Model Work? Robustness in Representing Product Purchases, Brand Purchases and Imperfectly Recorded Purchases," Marketing Science, INFORMS, vol. 4(3), pages 255-266.
    2. Daniel Fricke & Thomas Lux, 2015. "On the distribution of links in the interbank network: evidence from the e-MID overnight money market," Empirical Economics, Springer, vol. 49(4), pages 1463-1495, December.
    3. de Masi, G. & Iori, G. & Caldarelli, G., 2006. "A fitness model for the Italian interbank money market," Working Papers 06/08, Department of Economics, City University London.
    4. Anand, Kartik & Gai, Prasanna & Kapadia, Sujit & Brennan, Simon & Willison, Matthew, 2013. "A network model of financial system resilience," Journal of Economic Behavior & Organization, Elsevier, vol. 85(C), pages 219-235.
    5. Manuel Illueca & Lars Norden & Gregory F. Udell, 2014. "Liberalization and Risk-Taking: Evidence from Government-Controlled Banks," Review of Finance, European Finance Association, vol. 18(4), pages 1217-1257.
    6. Luca Marotta & Salvatore Miccich`e & Yoshi Fujiwara & Hiroshi Iyetomi & Hideaki Aoyama & Mauro Gallegati & Rosario N. Mantegna, 2015. "Backbone of credit relationships in the Japanese credit market," Papers 1511.06870, arXiv.org.
    7. Luís M B Cabral & José Mata, 2003. "On the Evolution of the Firm Size Distribution: Facts and Theory," American Economic Review, American Economic Association, vol. 93(4), pages 1075-1090, September.
    8. Xavier Gabaix & Rustam Ibragimov, 2011. "Rank - 1 / 2: A Simple Way to Improve the OLS Estimation of Tail Exponents," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 24-39, January.
    9. Nier, Erlend & Yang, Jing & Yorulmazer, Tanju & Alentorn, Amadeo, 2007. "Network models and financial stability," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 2033-2060, June.
    10. L. Crosato & P. Ganugi, 2007. "Statistical regularity of firm size distribution: the Pareto IV and truncated Yule for Italian SCI manufacturing," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 16(1), pages 85-115, June.
    11. Karl Finger & Daniel Fricke & Thomas Lux, 2013. "Network analysis of the e-MID overnight money market: the informational value of different aggregation levels for intrinsic dynamic processes," Computational Management Science, Springer, vol. 10(2), pages 187-211, June.
    12. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    13. Lux, Thomas, 2016. "A model of the topology of the bank – firm credit network and its role as channel of contagion," Journal of Economic Dynamics and Control, Elsevier, vol. 66(C), pages 36-53.
    14. A. S. C. Ehrenberg, 1959. "The Pattern of Consumer Purchases," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 8(1), pages 26-41, March.
    15. Gabaix, Xavier & Ibragimov, Rustam, 2011. "Rank − 1 / 2: A Simple Way to Improve the OLS Estimation of Tail Exponents," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 24-39.
    16. Segarra, Agustí & Teruel, Mercedes, 2012. "An appraisal of firm size distribution: Does sample size matter?," Journal of Economic Behavior & Organization, Elsevier, vol. 82(1), pages 314-328.
    17. Andrew G. Haldane & Robert M. May, 2011. "Systemic risk in banking ecosystems," Nature, Nature, vol. 469(7330), pages 351-355, January.
    18. Greene, William, 2008. "Functional forms for the negative binomial model for count data," Economics Letters, Elsevier, vol. 99(3), pages 585-590, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duc Thi Luu, 2022. "Portfolio Correlations in the Bank-Firm Credit Market of Japan," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 529-569, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lux, Thomas, 2017. "On the distribution of links in financial networks: Structural heterogeneity and functional form," Economics Working Papers 2017-05, Christian-Albrechts-University of Kiel, Department of Economics.
    2. Lux, Thomas, 2016. "Network effects and systemic risk in the banking sector," FinMaP-Working Papers 62, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    3. Daniel Fricke & Thomas Lux, 2015. "On the distribution of links in the interbank network: evidence from the e-MID overnight money market," Empirical Economics, Springer, vol. 49(4), pages 1463-1495, December.
    4. Hüser, Anne-Caroline, 2016. "Too interconnected to fail: A survey of the Interbank Networks literature," SAFE Working Paper Series 91, Leibniz Institute for Financial Research SAFE, revised 2016.
    5. Adão, Luiz F.S. & Silveira, Douglas & Ely, Regis A. & Cajueiro, Daniel O., 2022. "The impacts of interest rates on banks’ loan portfolio risk-taking," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    6. Segarra, Agustí & Teruel, Mercedes, 2012. "An appraisal of firm size distribution: Does sample size matter?," Journal of Economic Behavior & Organization, Elsevier, vol. 82(1), pages 314-328.
    7. Sam Langfield & Kimmo Soramäki, 2016. "Interbank Exposure Networks," Computational Economics, Springer;Society for Computational Economics, vol. 47(1), pages 3-17, January.
    8. Iori, Giulia & Mantegna, Rosario N. & Marotta, Luca & Miccichè, Salvatore & Porter, James & Tumminello, Michele, 2015. "Networked relationships in the e-MID interbank market: A trading model with memory," Journal of Economic Dynamics and Control, Elsevier, vol. 50(C), pages 98-116.
    9. Spiros Bougheas & Alan Kirman, 2015. "Complex Financial Networks and Systemic Risk: A Review," Dynamic Modeling and Econometrics in Economics and Finance, in: Pasquale Commendatore & Saime Kayam & Ingrid Kubin (ed.), Complexity and Geographical Economics, edition 127, pages 115-139, Springer.
    10. Finger, Karl & Lux, Thomas, 2014. "Friendship between banks: An application of an actor-oriented model of network formation on interbank credit relations," Kiel Working Papers 1916, Kiel Institute for the World Economy (IfW Kiel).
    11. Marco Bardoscia & Paolo Barucca & Stefano Battiston & Fabio Caccioli & Giulio Cimini & Diego Garlaschelli & Fabio Saracco & Tiziano Squartini & Guido Caldarelli, 2021. "The Physics of Financial Networks," Papers 2103.05623, arXiv.org.
    12. Sadamori Kojaku & Giulio Cimini & Guido Caldarelli & Naoki Masuda, 2018. "Structural changes in the interbank market across the financial crisis from multiple core-periphery analysis," Papers 1802.05139, arXiv.org.
    13. Vandermarliere, Benjamin & Karas, Alexei & Ryckebusch, Jan & Schoors, Koen, 2015. "Beyond the power law: Uncovering stylized facts in interbank networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 443-457.
    14. Pablo Rovira Kaltwasser & Alessandro Spelta, 2019. "Identifying systemically important financial institutions: a network approach," Computational Management Science, Springer, vol. 16(1), pages 155-185, February.
    15. Finger, Karl & Lux, Thomas, 2014. "Friendship Between Banks: An Application of an Actor-Oriented Model of Network Formation on Interbank Credit Relations," FinMaP-Working Papers 1, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    16. Bee, Marco & Riccaboni, Massimo & Schiavo, Stefano, 2017. "Where Gibrat meets Zipf: Scale and scope of French firms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 265-275.
    17. Junho Na & Jeong-dong Lee & Chulwoo Baek, 2017. "Is the service sector different in size heterogeneity?," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(1), pages 95-120, April.
    18. Fariba Karimi & Matthias Raddant, 2016. "Cascades in Real Interbank Markets," Computational Economics, Springer;Society for Computational Economics, vol. 47(1), pages 49-66, January.
    19. Kobayashi, Teruyoshi & Takaguchi, Taro, 2018. "Identifying relationship lending in the interbank market: A network approach," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 20-36.
    20. Yoshiharu Maeno & Kenji Nishiguchi & Satoshi Morinaga & Hirokazu Matsushima, 2014. "Impact of credit default swaps on financial contagion," Papers 1411.1356, arXiv.org.

    More about this item

    Keywords

    Financial network; Interbank market; Degree distribution; Credit network;
    All these keywords.

    JEL classification:

    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G01 - Financial Economics - - General - - - Financial Crises
    • E42 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Monetary Sytsems; Standards; Regimes; Government and the Monetary System

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:58:y:2020:i:3:d:10.1007_s00181-018-1569-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.