IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v24y2024i1d10.1007_s12351-024-00815-y.html
   My bibliography  Save this article

Efficiency evaluation of China’s high-tech industry with a dynamic network data envelopment analysis game cross-efficiency model

Author

Listed:
  • Yang Huang

    (Guizhou University)

  • Meiqiang Wang

    (Guizhou University)

Abstract

When using Data Envelopment Analysis (DEA) to evaluate the efficiency of a high-tech industrial system, it is necessary to consider the operating process in each period and the dynamic interdependence between periods of the system. Meanwhile, the shortcomings of the DEA self-evaluation mode cannot be ignored. However, few studies deal with these three problems in a unified framework. Therefore, this paper improves the DEA game cross-efficiency model to the dynamic network DEA game cross-efficiency model to evaluate the efficiencies of high-tech industries in 27 provincial-level regions of China from 2011 to 2015. The main evaluation results are as follows. Regarding overall efficiency, China’s high-tech industry still has approximately 45% room for improvement, and the development of adjacent regions is unbalanced. There are 18 regions with low Research and Development (R&D) efficiencies and 8 with low commercialization efficiencies. From a national perspective, R&D efficiency displays an inverted U-shaped trend, commercialization efficiency shows a U-shaped trend, and overall efficiency increases slightly during the study period. In addition, R&D efficiency has a greater impact on overall efficiency than commercialization efficiency does. The reasons are analyzed, and recommendations are provided based on the evaluation results to improve the efficiency of China’s high-tech industry.

Suggested Citation

  • Yang Huang & Meiqiang Wang, 2024. "Efficiency evaluation of China’s high-tech industry with a dynamic network data envelopment analysis game cross-efficiency model," Operational Research, Springer, vol. 24(1), pages 1-36, March.
  • Handle: RePEc:spr:operea:v:24:y:2024:i:1:d:10.1007_s12351-024-00815-y
    DOI: 10.1007/s12351-024-00815-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-024-00815-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-024-00815-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kao, Chiang, 2009. "Efficiency decomposition in network data envelopment analysis: A relational model," European Journal of Operational Research, Elsevier, vol. 192(3), pages 949-962, February.
    2. Kao, Chiang, 2013. "Dynamic data envelopment analysis: A relational analysis," European Journal of Operational Research, Elsevier, vol. 227(2), pages 325-330.
    3. Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity and intermediate products: A frontier approach," Economics Letters, Elsevier, vol. 50(1), pages 65-70, January.
    4. Chaoqun Ma & Debin Liu & Zhongbao Zhou & Wei Zhao & Wenbin Liu, 2014. "Game Cross Efficiency for Systems with Two‐Stage Structures," Journal of Applied Mathematics, John Wiley & Sons, vol. 2014(1).
    5. Guan, Jiancheng & Chen, Kaihua, 2012. "Modeling the relative efficiency of national innovation systems," Research Policy, Elsevier, vol. 41(1), pages 102-115.
    6. Panagiotis Mitropoulos, 2021. "Production and quality performance of healthcare services in EU countries during the economic crisis," Operational Research, Springer, vol. 21(2), pages 857-873, June.
    7. Yu, Anyu & Shi, Yu & You, Jianxin & Zhu, Joe, 2021. "Innovation performance evaluation for high-tech companies using a dynamic network data envelopment analysis approach," European Journal of Operational Research, Elsevier, vol. 292(1), pages 199-212.
    8. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    9. Wang, Chun-Hsien & Lu, Yung-Hsiang & Huang, Chin-Wei & Lee, Jun-Yen, 2013. "R&D, productivity, and market value: An empirical study from high-technology firms," Omega, Elsevier, vol. 41(1), pages 143-155.
    10. Liu, Hui-hui & Yang, Guo-liang & Liu, Xiao-xiao & Song, Yao-yao, 2020. "R&D performance assessment of industrial enterprises in China: A two-stage DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    11. Li, Lan-bing & Liu, Bing-lian & Liu, Wei-lin & Chiu, Yung-Ho, 2017. "Efficiency evaluation of the regional high-tech industry in China: A new framework based on meta-frontier dynamic DEA analysis," Socio-Economic Planning Sciences, Elsevier, vol. 60(C), pages 24-33.
    12. Juan Aparicio & Sergio Perelman & Daniel Santín, 2022. "Comparing the evolution of productivity and performance gaps in education systems through DEA: an application to Latin American countries," Operational Research, Springer, vol. 22(2), pages 1443-1477, April.
    13. Tone, Kaoru & Kweh, Qian Long & Lu, Wen-Min & Ting, Irene Wei Kiong, 2019. "Modeling investments in the dynamic network performance of insurance companies," Omega, Elsevier, vol. 88(C), pages 237-247.
    14. Meng, Fanyong & Xiong, Beibei, 2021. "Logical efficiency decomposition for general two-stage systems in view of cross efficiency," European Journal of Operational Research, Elsevier, vol. 294(2), pages 622-632.
    15. Kao, Chiang & Liu, Shiang-Tai, 2019. "Cross efficiency measurement and decomposition in two basic network systems," Omega, Elsevier, vol. 83(C), pages 70-79.
    16. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    17. Kairui Zuo & Jiancheng Guan, 2017. "Measuring the R&D efficiency of regions by a parallel DEA game model," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 175-194, July.
    18. Guan, JianCheng & Zuo, KaiRui & Chen, KaiHua & Yam, Richard C.M., 2016. "Does country-level R&D efficiency benefit from the collaboration network structure?," Research Policy, Elsevier, vol. 45(4), pages 770-784.
    19. Liang Liang & Jie Wu & Wade D. Cook & Joe Zhu, 2008. "The DEA Game Cross-Efficiency Model and Its Nash Equilibrium," Operations Research, INFORMS, vol. 56(5), pages 1278-1288, October.
    20. Kao, Chiang, 2017. "Efficiency measurement and frontier projection identification for general two-stage systems in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 261(2), pages 679-689.
    21. Zhongfei Chen & Stavros Kourtzidis & Panayiotis Tzeremes & Nickolaos Tzeremes, 2022. "A robust network DEA model for sustainability assessment: an application to Chinese Provinces," Operational Research, Springer, vol. 22(1), pages 235-262, March.
    22. Chen, Yao & Cook, Wade D. & Li, Ning & Zhu, Joe, 2009. "Additive efficiency decomposition in two-stage DEA," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1170-1176, August.
    23. Chen, Yao & Du, Juan & David Sherman, H. & Zhu, Joe, 2010. "DEA model with shared resources and efficiency decomposition," European Journal of Operational Research, Elsevier, vol. 207(1), pages 339-349, November.
    24. Mohammad Khodabakhshi & Kourosh Aryavash, 2017. "The cross-efficiency in the optimistic–pessimistic framework," Operational Research, Springer, vol. 17(2), pages 619-632, July.
    25. Tone, Kaoru & Tsutsui, Miki, 2010. "Dynamic DEA: A slacks-based measure approach," Omega, Elsevier, vol. 38(3-4), pages 145-156, June.
    26. Qingxian An & Fanyong Meng & Beibei Xiong & Zongrun Wang & Xiaohong Chen, 2020. "Assessing the relative efficiency of Chinese high-tech industries: a dynamic network data envelopment analysis approach," Annals of Operations Research, Springer, vol. 290(1), pages 707-729, July.
    27. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    28. Chaoqun Ma & Debin Liu & Zhongbao Zhou & Wei Zhao & Wenbin Liu, 2014. "Game Cross Efficiency for Systems with Two-Stage Structures," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-8, March.
    29. Li, Yongjun & Chen, Yao & Liang, Liang & Xie, Jianhui, 2012. "DEA models for extended two-stage network structures," Omega, Elsevier, vol. 40(5), pages 611-618.
    30. Liang Liang & Wade D. Cook & Joe Zhu, 2008. "DEA models for two‐stage processes: Game approach and efficiency decomposition," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(7), pages 643-653, October.
    31. Kao, Chiang & Liu, Shiang-Tai, 2020. "A slacks-based measure model for calculating cross efficiency in data envelopment analysis," Omega, Elsevier, vol. 95(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    2. Lim, Dong-Joon & Kim, Moon-Su, 2022. "Measuring dynamic efficiency with variable time lag effects," Omega, Elsevier, vol. 108(C).
    3. Zhang, Linyan & Chen, Kun, 2019. "Hierarchical network systems: An application to high-technology industry in China," Omega, Elsevier, vol. 82(C), pages 118-131.
    4. Jiawei Yang & Lei Fang, 2022. "Average lexicographic efficiency decomposition in two-stage data envelopment analysis: an application to China’s regional high-tech innovation systems," Annals of Operations Research, Springer, vol. 312(2), pages 1051-1093, May.
    5. Kao, Chiang, 2014. "Efficiency decomposition for general multi-stage systems in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 232(1), pages 117-124.
    6. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
    7. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    8. Wang, Qunwei & Hang, Ye & Sun, Licheng & Zhao, Zengyao, 2016. "Two-stage innovation efficiency of new energy enterprises in China: A non-radial DEA approach," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 254-261.
    9. Fang, Lei, 2020. "Stage efficiency evaluation in a two-stage network data envelopment analysis model with weight priority," Omega, Elsevier, vol. 97(C).
    10. Yu-Chuan Chen & Yung-Ho Chiu & Tzu-Han Chang & Tai-Yu Lin, 2023. "Sustainable Development, Government Efficiency, and People’s Happiness," Journal of Happiness Studies, Springer, vol. 24(4), pages 1549-1578, April.
    11. Li, Feng & Zhu, Qingyuan & Chen, Zhi, 2019. "Allocating a fixed cost across the decision making units with two-stage network structures," Omega, Elsevier, vol. 83(C), pages 139-154.
    12. Koronakos, Gregory & Sotiros, Dimitris & Despotis, Dimitris K. & Kritikos, Manolis N., 2022. "Fair efficiency decomposition in network DEA: A compromise programming approach," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    13. Li, Feng & Zhang, Danlu & Zhang, Jinyu & Kou, Gang, 2022. "Measuring the energy production and utilization efficiency of Chinese thermal power industry with the fixed-sum carbon emission constraint," International Journal of Production Economics, Elsevier, vol. 252(C).
    14. Liu, Xing & Wu, Xianhua & Zhang, Weipan, 2024. "A new DEA model and its application in performance evaluation of scientific research activities in the universities of China's double first-class initiative," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    15. Kao, Chiang, 2016. "Efficiency decomposition and aggregation in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 255(3), pages 778-786.
    16. Lin, Ruiyue & Liu, Qian, 2021. "Multiplier dynamic data envelopment analysis based on directional distance function: An application to mutual funds," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1043-1057.
    17. Huang, Chin-wei & Ho, Foo Nin & Chiu, Yung-ho, 2014. "Measurement of tourist hotels׳ productive efficiency, occupancy, and catering service effectiveness using a modified two-stage DEA model in Taiwan," Omega, Elsevier, vol. 48(C), pages 49-59.
    18. Wang, Ya & Pan, Jiao-feng & Pei, Rui-min & Yi, Bo-Wen & Yang, Guo-liang, 2020. "Assessing the technological innovation efficiency of China's high-tech industries with a two-stage network DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    19. Suvvari Anandarao & S. Raja Sethu Durai & Phanindra Goyari, 2019. "Efficiency Decomposition in two-stage Data Envelopment Analysis: An application to Life Insurance companies in India," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 271-285, June.
    20. Lívia Mariana Lopes de Souza Torres & Francisco S. Ramos, 2024. "Are Brazilian Higher Education Institutions Efficient in Their Graduate Activities? A Two-Stage Dynamic Data-Envelopment-Analysis Cooperative Approach," Mathematics, MDPI, vol. 12(6), pages 1-41, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:24:y:2024:i:1:d:10.1007_s12351-024-00815-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.