IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v23y2018i8d10.1007_s11027-018-9786-z.html
   My bibliography  Save this article

Impact assessment of climate policy on Poland's power sector

Author

Listed:
  • Tadeusz Skoczkowski

    () (Warsaw University of Technology)

  • Sławomir Bielecki

    (Warsaw University of Technology)

  • Arkadiusz Węglarz

    (Warsaw University of Technology)

  • Magdalena Włodarczak

    (Warsaw University of Technology)

  • Piotr Gutowski

    (Polish National Energy Conservation Agency)

Abstract

This article addresses the impact of the European Union Emissions Trading System (EU ETS) on Poland’s conventional energy sector in 2008–2020 and further till 2050. Poland is a country with over 80% dependence on coal in the power sector being under political pressure of the European Union’s (EU) ambitious climate policy. The impact of the increase of the European Emission Allowance (EUA) price on fossil fuel power sector has been modelled for different scenarios. The innovation of this article consists in proposing a methodology of estimation actual costs and benefits of power stations in a country with a heavily coal-dependent power sector in the process of transition to a low-carbon economy. Strong political and economic interdependence of coal and power sector has been demonstrated as well as the impact caused by the EU ETS participation in different technology groups of power plants. It has been shown that gas-fuelled combined heat and power units are less vulnerable to the EU ETS-related costs, whereas the hard coal-fired plants may lose their profitability soon after 2020. Lignite power plants, despite their high emissivity, may longer remain in operation owing to low operational costs. Additionally, the results of long-term, up to 2050, modelling of Poland’s energy sector supported an unavoidable need of deep decarbonisation of the power sector to meet the post-Paris climate objectives. It has been concluded that investing in coal-based power capacity may lead to a carbon lock-in of the power sector. Finally, the overall costs of such a transformation have been discussed and confronted with the financial support offered by the EU. The whole consideration has been made in a wide context of changes ongoing globally in energy markets and compared with some other countries seeking transformation paths from coal. Poland’s case can serve as a lesson for all countries trying to reduce coal dependence in power generation. Reforms in the energy sector shall from the very beginning be an essential part of a sustainable transition of the whole nation’s economy. They must scale the power capacity to the future demand avoiding stranded costs. The reforms must be wide-ranging, based on a wide political consensus and not biased against the coal sector. Future energy mix and corresponding technologies shall be carefully designed, matched and should remain stable in the long-term perspective. Coal-based power capacity being near the end of its lifetime provides an economically viable option to commence a fuel switch and the following technology replacement. Real benefits and costs of the energy transition shall be fairly allocated to all stakeholders and communicated to the society. The social costs and implications in coal-dependent regions may be high, especially in the short-term perspective, but then the transformation will bring profits to the whole society.

Suggested Citation

  • Tadeusz Skoczkowski & Sławomir Bielecki & Arkadiusz Węglarz & Magdalena Włodarczak & Piotr Gutowski, 2018. "Impact assessment of climate policy on Poland's power sector," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(8), pages 1303-1349, December.
  • Handle: RePEc:spr:masfgc:v:23:y:2018:i:8:d:10.1007_s11027-018-9786-z
    DOI: 10.1007/s11027-018-9786-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-018-9786-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karsten Neuhoff & Kim Keats Martinez & Misato Sato, 2006. "Allocation, incentives and distortions: the impact of EU ETS emissions allowance allocations to the electricity sector," Climate Policy, Taylor & Francis Journals, vol. 6(1), pages 73-91, January.
    2. Wietze Lise & Jos Sijm & Benjamin Hobbs, 2010. "The Impact of the EU ETS on Prices, Profits and Emissions in the Power Sector: Simulation Results with the COMPETES EU20 Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(1), pages 23-44, September.
    3. Suwala, Wojciech & Labys, Walter C., 2002. "Market transition and regional adjustments in the Polish coal industry," Energy Economics, Elsevier, vol. 24(3), pages 285-303, May.
    4. Oskar Lecuyer & Adrien Vogt-Schilb, 2014. "Optimal Transition from Coal to Gas and Renewable Power under Capacity Constraints and Adjustment Costs," CIRED Working Papers hal-01057241, HAL.
    5. Böhringer, Christoph & Rutherford, Thomas F., 2013. "Transition towards a low carbon economy: A computable general equilibrium analysis for Poland," Energy Policy, Elsevier, vol. 55(C), pages 16-26.
    6. Rogge, Karoline S. & Hoffmann, Volker H., 2010. "The impact of the EU ETS on the sectoral innovation system for power generation technologies - Findings for Germany," Energy Policy, Elsevier, vol. 38(12), pages 7639-7652, December.
    7. Pedro Linares & Francisco Javier Santos & Mariano Ventosa & Luis Lapiedra, 2006. "Impacts of the European Emissions Trading Scheme Directive and Permit Assignment Methods on the Spanish Electricity Sector," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 79-98.
    8. Kavouridis, K. & Koukouzas, N., 2008. "Coal and sustainable energy supply challenges and barriers," Energy Policy, Elsevier, vol. 36(2), pages 693-703, February.
    9. Hoffmann, Volker H., 2007. "EU ETS and Investment Decisions:: The Case of the German Electricity Industry," European Management Journal, Elsevier, vol. 25(6), pages 464-474, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cenjie Liu & Zhongbao Zhou & Qing Liu & Rui Xie & Ximei Zeng, 2020. "Can a low-carbon development path achieve win-win development: evidence from China’s low-carbon pilot policy," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1199-1219, October.
    2. Marta Bottero & Federico Dell’Anna & Vito Morgese, 2021. "Evaluating the Transition Towards Post-Carbon Cities: A Literature Review," Sustainability, MDPI, Open Access Journal, vol. 13(2), pages 1-1, January.
    3. Qi Sun & Qiaosheng Wu & Jinhua Cheng & Pengcheng Tang & Siyao Li & Yantuo Mei, 2020. "How Industrialization Stage Moderates the Impact of China’s Low-Carbon Pilot Policy?," Sustainability, MDPI, Open Access Journal, vol. 12(24), pages 1-1, December.
    4. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    5. Maamoun, Nada & Kennedy, Ryan & Jin, Xiaomeng & Urpelainen, Johannes, 2020. "Identifying coal-fired power plants for early retirement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anke, Carl-Philipp & Hobbie, Hannes & Schreiber, Steffi & Möst, Dominik, 2020. "Coal phase-outs and carbon prices: Interactions between EU emission trading and national carbon mitigation policies," Energy Policy, Elsevier, vol. 144(C).
    2. Rogge, Karoline S. & Schneider, Malte & Hoffmann, Volker H., 2011. "The innovation impact of the EU Emission Trading System -- Findings of company case studies in the German power sector," Ecological Economics, Elsevier, vol. 70(3), pages 513-523, January.
    3. Wang, Feng & Liu, Xiying & Nguyen, Tue Anh, 2018. "Evaluating the economic impacts and feasibility of China's energy cap: Based on an Analytic General Equilibrium Model," Economic Modelling, Elsevier, vol. 69(C), pages 114-126.
    4. Misato Sato & Karsten Neuhoff & Verena Graichen & Katja Schumacher & Felix Matthes, 2013. "Sectors under scrutiny � Evaluation of indicators to assess the risk of carbon leakage in the UK and Germany," GRI Working Papers 113, Grantham Research Institute on Climate Change and the Environment.
    5. Martin Larsson, 2017. "EU Emissions Trading: Policy-Induced Innovation, or Business as Usual? Findings from Company Case Studies in the Republic of Croatia," Working Papers 1705, The Institute of Economics, Zagreb.
    6. Venmans, Frank, 2012. "A literature-based multi-criteria evaluation of the EU ETS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5493-5510.
    7. Misato Sato & Karsten Neuhoff & Verena Graichen & Katja Schumacher & Felix Matthes, 2015. "Sectors Under Scrutiny: Evaluation of Indicators to Assess the Risk of Carbon Leakage in the UK and Germany," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 60(1), pages 99-124, January.
    8. Fatemeh Nazifi, 2016. "The pass-through rates of carbon costs on to electricity prices within the Australian National Electricity Market," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(1), pages 41-62, January.
    9. Jinye Zhao & Benjamin F. Hobbs & Jong-Shi Pang, 2010. "Long-Run Equilibrium Modeling of Emissions Allowance Allocation Systems in Electric Power Markets," Operations Research, INFORMS, vol. 58(3), pages 529-548, June.
    10. Oberndorfer, Ulrich, 2009. "EU Emission Allowances and the stock market: Evidence from the electricity industry," Ecological Economics, Elsevier, vol. 68(4), pages 1116-1126, February.
    11. Pahle, Michael & Fan, Lin & Schill, Wolf-Peter, 2011. "How Emission Certificate Allocations Distort Fossil Investments: The German Example," EconStor Open Access Articles, ZBW - Leibniz Information Centre for Economics, pages 1975-1987.
    12. Teixidó, Jordi & Verde, Stefano F. & Nicolli, Francesco, 2019. "The impact of the EU Emissions Trading System on low-carbon technological change: The empirical evidence," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    13. Borghesi, Simone & Cainelli, Giulio & Mazzanti, Massimiliano, 2015. "Linking emission trading to environmental innovation: Evidence from the Italian manufacturing industry," Research Policy, Elsevier, vol. 44(3), pages 669-683.
    14. Fatemeh Nazifi, 2016. "The pass-through rates of carbon costs on to electricity prices within the Australian National Electricity Market," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(1), pages 41-62, January.
    15. Brockmann, Karl Ludwig & Heindl, Peter & Löschel, Andreas & Lutz, Benjamin & Schumacher, Jan, 2012. "KfW/ZEW CO2 Barometer 2012: Anreizwirkung des EU-Emissionshandels auf Unternehmen gering – Klimapolitische Regulierung wenig relevant für Standortentscheidungen," KfW/ZEW-CO2-Barometer, ZEW - Leibniz Centre for European Economic Research, number 109796.
    16. Lambie, Neil Ross, 2010. "Understanding the effect of an emissions trading scheme on electricity generator investment and retirement behaviour: the proposed Carbon Pollution Reduction Scheme," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(2), pages 1-15.
    17. Albert Czerny & Peter Letmathe, 2017. "Eco‐efficiency: GHG reduction related environmental and economic performance. The case of the companies participating in the EU Emissions Trading Scheme," Business Strategy and the Environment, Wiley Blackwell, vol. 26(6), pages 791-806, September.
    18. Bel, Germà & Joseph, Stephan, 2018. "Policy stringency under the European Union Emission trading system and its impact on technological change in the energy sector," Energy Policy, Elsevier, vol. 117(C), pages 434-444.
    19. El Khatib, Sameh & Galiana, Francisco D., 2019. "Investigating emission regulation policy in the electricity sector: modeling an oligopolistic electricity market under hourly cap-and-trade," Energy Economics, Elsevier, vol. 78(C), pages 428-443.
    20. Rogge, Karoline S. & Hoffmann, Volker H., 2010. "The impact of the EU ETS on the sectoral innovation system for power generation technologies - Findings for Germany," Energy Policy, Elsevier, vol. 38(12), pages 7639-7652, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:23:y:2018:i:8:d:10.1007_s11027-018-9786-z. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.