IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2689-d1406958.html
   My bibliography  Save this article

Empirical Assessment of the Efficiency of Poland’s Energy Transition Process in the Context of Implementing the European Union’s Energy Policy

Author

Listed:
  • Jarosław Brodny

    (Faculty of Organization and Management, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Magdalena Tutak

    (Faculty of Mining, Safety Engineering and Industrial Automation, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Wes Grebski

    (Penn State Hazleton, The Pennsylvania State University, 76 University Drive, Hazleton, PA 18202, USA)

Abstract

This article addresses one of the contemporary economy’s most challenging endeavors: the energy transition. Specifically, the aim of the study was to assess the effectiveness of Poland’s energy transition process between 2004 and 2021. A comprehensive approach is employed to analyze Poland’s energy transition process, focusing on the effectiveness of implementation through the Energy Transition Effectiveness Index. This methodology incorporates four dimensions, namely energy security, economic considerations, climate impact, and social aspects, each characterized by 22 sub-indices. The research methodology employs a two-tiered approach based on the multi-criteria decision making methodology. The EDAS method is utilized to determine the indices’ values, while the CRITIC, equal weights, and statistical variance methods and Laplace’s criterion are employed to ascertain sub-indices values and dimension weights, particularly useful for decision making under uncertainty. Moreover, the relationship between these indices, the Energy Transition Effectiveness Index, and Poland’s Gross Domestic Product is explored. By evaluating Poland’s energy transition effectiveness from 2004 to 2021 and comparing the results with other European Union countries, it becomes evident that the effectiveness varies over time. Despite encountering economic and social challenges during the energy sector’s transformation, Poland exhibits positive progress in its energy transition efforts, outperforming certain European Union counterparts. However, there is a pressing need to intensify efforts to curtail emissions and enhance renewable energy utilization. The European Union’s support and coordination are deemed crucial in facilitating these endeavors, alongside fostering the wider adoption of best practices among member states. The developed methodology stands as a valuable tool for ongoing evaluation of transformation processes across European Union nations.

Suggested Citation

  • Jarosław Brodny & Magdalena Tutak & Wes Grebski, 2024. "Empirical Assessment of the Efficiency of Poland’s Energy Transition Process in the Context of Implementing the European Union’s Energy Policy," Energies, MDPI, vol. 17(11), pages 1-36, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2689-:d:1406958
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2689/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2689/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yiming Xiao & Han Wu & Guohua Wang & Shangrui Wang, 2021. "The Relationship between Energy Poverty and Individual Development: Exploring the Serial Mediating Effects of Learning Behavior and Health Condition," IJERPH, MDPI, vol. 18(16), pages 1-14, August.
    2. Aristizabal-H, Gustavo & Goerke-Mallet, Peter & Kretschmann, Jürgen & Restrepo-Baena, Oscar Jaime, 2023. "Sustainability of coal mining. Is Germany a post-mining model for Colombia?," Resources Policy, Elsevier, vol. 81(C).
    3. Tadeusz Skoczkowski & Sławomir Bielecki & Arkadiusz Węglarz & Magdalena Włodarczak & Piotr Gutowski, 2018. "Impact assessment of climate policy on Poland's power sector," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(8), pages 1303-1349, December.
    4. Teng Ma & Silu Zhang & Yilong Xiao & Xiaorui Liu & Minghao Wang & Kai Wu & Guofeng Shen & Chen Huang & Yan Ru Fang & Yang Xie, 2023. "Costs and health benefits of the rural energy transition to carbon neutrality in China," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Streimikiene, Dalia & Klevas, Valentinas, 2007. "Promotion of renewable energy in Baltic States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(4), pages 672-687, May.
    6. Siksnelyte, Indre & Zavadskas, Edmundas Kazimieras & Bausys, Romualdas & Streimikiene, Dalia, 2019. "Implementation of EU energy policy priorities in the Baltic Sea Region countries: Sustainability assessment based on neutrosophic MULTIMOORA method," Energy Policy, Elsevier, vol. 125(C), pages 90-102.
    7. Krzysztof Wach & Agnieszka Głodowska & Marek Maciejewski & Marek Sieja, 2021. "Europeanization Processes of the EU Energy Policy in Visegrad Countries in the Years 2005–2018," Energies, MDPI, vol. 14(7), pages 1-23, March.
    8. Tutak, Magdalena & Brodny, Jarosław, 2022. "Analysis of the level of energy security in the three seas initiative countries," Applied Energy, Elsevier, vol. 311(C).
    9. Neofytou, H. & Nikas, A. & Doukas, H., 2020. "Sustainable energy transition readiness: A multicriteria assessment index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Mohammad Fazle Rabbi & József Popp & Domicián Máté & Sándor Kovács, 2022. "Energy Security and Energy Transition to Achieve Carbon Neutrality," Energies, MDPI, vol. 15(21), pages 1-18, October.
    11. Bijańska, Jolanta & Wodarski, Krzysztof, 2024. "Hard coal production in Poland in the aspect of climate and energy policy of the European Union and the war in Ukraine. Investment case study," Resources Policy, Elsevier, vol. 88(C).
    12. Anita Tatti & Sibilla Ferroni & Martina Ferrando & Mario Motta & Francesco Causone, 2023. "The Emerging Trends of Renewable Energy Communities’ Development in Italy," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    13. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ewelina Włodarczyk & Joanna Herczakowska, 2025. "Social Dimension of Poland’s Sustainable Energy Transition as Assessed by Residents of the Silesian Region," Sustainability, MDPI, vol. 17(6), pages 1-24, March.
    2. Jarosław Brodny & Magdalena Tutak & Wieslaw Wes Grebski, 2025. "A Holistic Assessment of Sustainable Energy Security and the Efficiency of Policy Implementation in Emerging EU Economies: A Long-Term Perspective," Energies, MDPI, vol. 18(7), pages 1-38, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arsani Alina & Stefan George, 2024. "Energy Transition and European Sub-Models. Restructuring EU Economy," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 86-101.
    2. Rita Remeikienė & Ligita Gasparėnienė & Aleksandra Fedajev & Marek Szarucki & Marija Đekić & Jolita Razumienė, 2021. "Evaluation of Sustainable Energy Development Progress in EU Member States in the Context of Building Renovation," Energies, MDPI, vol. 14(14), pages 1-22, July.
    3. Izabela Jonek-Kowalska & Wieslaw Grebski, 2024. "Comparative Analysis of Domestic Production and Import of Hard Coal in Poland: Conclusions for Energy Policy and Competitiveness," Energies, MDPI, vol. 17(20), pages 1-22, October.
    4. Henryk Wojtaszek & Ireneusz Miciuła & Dagmara Modrzejewska & Adam Stecyk & Mariusz Sikora & Agnieszka Wójcik-Czerniawska & Małgorzata Smolarek & Anna Kowalczyk & Małgorzata Chojnacka, 2024. "Energy Policy until 2050—Comparative Analysis between Poland and Germany," Energies, MDPI, vol. 17(2), pages 1-36, January.
    5. Weihua Su & Dongcai Zhang & Chonghui Zhang & Dalia Streimikiene, 2020. "Sustainability assessment of energy sector development in China and European Union," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1063-1076, September.
    6. Jamile Eleutério Delesposte & Luís Alberto Duncan Rangel & Marcelo Jasmim Meiriño & Ramon Baptista Narcizo & André Armando Mendonça de Alencar Junior, 2021. "Use of multicriteria decision aid methods in the context of sustainable innovations: bibliometrics, applications and trends," Environment Systems and Decisions, Springer, vol. 41(4), pages 501-522, December.
    7. Brodny, Jarosław & Tutak, Magdalena, 2025. "Decade of Progress: A multidimensional measurement and assessment of energy sustainability in EU − 27 nations," Applied Energy, Elsevier, vol. 382(C).
    8. Zhou, Dequn & Chen, Ting & Ding, Hao & Wang, Qunwei, 2024. "Tracking the provincial energy transition in China: A comprehensive index," Energy, Elsevier, vol. 304(C).
    9. Justyna Światowiec-Szczepańska & Beata Stępień, 2022. "Drivers of Digitalization in the Energy Sector—The Managerial Perspective from the Catching Up Economy," Energies, MDPI, vol. 15(4), pages 1-25, February.
    10. Marcin Rabe & Barbara Czerniachowicz, 2022. "The Functioning Concept of the Stabilization System of the Power Grids Operation in Terms of Supply Chain Phases in Operations Based on a Hydrogen Energy Buffer," European Research Studies Journal, European Research Studies Journal, vol. 0(Special A), pages 298-306.
    11. Jacek Strojny & Anna Krakowiak-Bal & Jarosław Knaga & Piotr Kacorzyk, 2023. "Energy Security: A Conceptual Overview," Energies, MDPI, vol. 16(13), pages 1-35, June.
    12. An, Chao & Zhou, Peng, 2024. "Energy transition affordability in China: Disparities and determinants," Energy Economics, Elsevier, vol. 140(C).
    13. Adam Dominiak & Artur Rusowicz, 2022. "Change of Fossil-Fuel-Related Carbon Productivity Index of the Main Manufacturing Sectors in Poland," Energies, MDPI, vol. 15(19), pages 1-14, September.
    14. Harutyunyan, Artur & Badyda, Krzysztof & Wołowicz, Marcin, 2025. "Analyzing of different repowering methods on the example of 300 MW existing steam cycle power plant using gatecycle™ software," Energy, Elsevier, vol. 314(C).
    15. Faik Bilgili & Daniel Balsalobre-Lorente & Sevda Kuşkaya & Mohammed Alnour & Seyit Önderol & Mohammad Enamul Hoque, 2024. "Are research and development on energy efficiency and energy sources effective in the level of CO2 emissions? Fresh evidence from EU data," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 24183-24219, September.
    16. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    17. Łukasz Jarosław Kozar & Robert Matusiak & Marta Paduszyńska & Adam Sulich, 2022. "Green Jobs in the EU Renewable Energy Sector: Quantile Regression Approach," Energies, MDPI, vol. 15(18), pages 1-21, September.
    18. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    19. Yi Lian & Yunfeng Shang & Fangbin Qian, 2024. "RETRACTED ARTICLE: Spatial effects of green finance development in Chinese provinces under the context of high-quality energy development," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-32, April.
    20. Wabukala, Benard M. & Bergland, Olvar & Mukisa, Nicholas & Adaramola, Muyiwa S. & Watundu, Susan & Orobia, Laura A. & Rudaheranwa, Nichodemus, 2024. "Electricity security in Uganda: Measurement and policy priorities," Utilities Policy, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2689-:d:1406958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.