IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v20y2015i2p317-339.html
   My bibliography  Save this article

The role of small scale sand dams in securing water supply under climate change in Ethiopia

Author

Listed:
  • Ralph Lasage

    ()

  • Jeroen Aerts
  • Peter Verburg
  • Alemu Sileshi

Abstract

Community-based water storage in semi arid areas can help to adapt to climate change and mitigate household water shortages. Since little is known on the downstream effects of local water storage, this study employs a water balance model to perform a catchment scale assessment of upscaling local scale water storage in sand dams. The impacts of increasing water storage is evaluated under current climate conditions and future climate change scenarios. Survey information is used to estimate current and future water demand and assess the benefits derived from current sand dams in the Ethiopian study area. Using an indicator of the environmental flow concept, downstream hydrological impacts are simulated for different scenarios. Storage by 613 dams, supplying water to 555,000 people, has no impact on environmental flow downstream of the sand dams. Storage by 2190 dams leads to a modest increase in the number of months with low flow (4 to 9 %). Projected climate change leads to a larger increase in the number of low flow months of 0 to 29 %. Joint climate change and maximum storage scenarios cause an increase in low flow months from 4 to 50 %. Under the most extreme climate change projection 4.5 % of the wet season discharge is stored in sand dams. Because of the local benefits of improved water supply and the acceptable range of downstream impacts, sand dams appear to be a viable way for supplying drinking water in this catchment as well as in other semi-arid regions with similar conditions. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Ralph Lasage & Jeroen Aerts & Peter Verburg & Alemu Sileshi, 2015. "The role of small scale sand dams in securing water supply under climate change in Ethiopia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(2), pages 317-339, February.
  • Handle: RePEc:spr:masfgc:v:20:y:2015:i:2:p:317-339
    DOI: 10.1007/s11027-013-9493-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11027-013-9493-8
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen Ngigi & Hubert Savenije & Francis Gichuki, 2008. "Hydrological Impacts of Flood Storage and Management on Irrigation Water Abstraction in Upper Ewaso Ng’iro River Basin, Kenya," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(12), pages 1859-1879, December.
    2. Cossins, Noel J. & Upton, Martin, 1988. "Options for improvement of the Borana Pastoral System," Agricultural Systems, Elsevier, vol. 27(4), pages 251-278.
    3. Hatibu, N. & Mutabazi, K. & Senkondo, E.M. & Msangi, A.S.K., 2006. "Economics of rainwater harvesting for crop enterprises in semi-arid areas of East Africa," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 74-86, February.
    4. Rockström, Johan & Karlberg, Louise & Wani, Suhas P. & Barron, Jennie & Hatibu, Nuhu & Oweis, Theib & Bruggeman, Adriana & Farahani, Jalali & Qiang, Zhu, 2010. "Managing water in rainfed agriculture--The need for a paradigm shift," Agricultural Water Management, Elsevier, vol. 97(4), pages 543-550, April.
    5. Sileshi Baye & Helmut Kloos & Worku Mulat & Aymere Assayie & Gabriel Gullis & Abera Kumie & Biruck Yirsaw, 2012. "Assessment on the Approaches Used for Water and Sanitation Programs in Southern Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4295-4309, December.
    6. Balana, Bedru Babulo & Muys, Bart & Haregeweyn, Nigussie & Descheemaeker, Katrien & Deckers, Jozef & Poesen, Jean & Nyssen, Jan & Mathijs, Erik, 2012. "Cost-benefit analysis of soil and water conservation measure: The case of exclosures in northern Ethiopia," Forest Policy and Economics, Elsevier, vol. 15(C), pages 27-36.
    7. Smakhtin, Vladimir, 2005. "An assessment of hydrology and environmental flows in the Walawe River Basin, Sri Lanka," IWMI Working Papers H038045, International Water Management Institute.
    8. Charlotte Fraiture, 2007. "Integrated water and food analysis at the global and basin level. An application of WATERSIM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 185-198, January.
    9. Bouma, Jetske A. & Biggs, Trent W. & Bouwer, Laurens M., 2011. "The downstream externalities of harvesting rainwater in semi-arid watersheds: An Indian case study," Agricultural Water Management, Elsevier, vol. 98(7), pages 1162-1170, May.
    10. Glendenning, C.J. & van Ogtrop, F.F. & Mishra, A.K. & Vervoort, R.W., 2012. "Balancing watershed and local scale impacts of rain water harvesting in India—A review," Agricultural Water Management, Elsevier, vol. 107(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bouma, Jetske A. & Hegde, Seema S. & Lasage, Ralph, 2016. "Assessing the returns to water harvesting: A meta-analysis," Agricultural Water Management, Elsevier, vol. 163(C), pages 100-109.
    2. Chen, Ji & Shi, Haiyun & Sivakumar, Bellie & Peart, Mervyn R., 2016. "Population, water, food, energy and dams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 18-28.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:20:y:2015:i:2:p:317-339. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.