IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v163y2016icp100-109.html
   My bibliography  Save this article

Assessing the returns to water harvesting: A meta-analysis

Author

Listed:
  • Bouma, Jetske A.
  • Hegde, Seema S.
  • Lasage, Ralph

Abstract

This study presents the results of a meta-analysis of the peer reviewed literature on water harvesting technologies, with a focus on the crop yield impacts of water harvesting in semi-arid Africa and Asia. Main aim of the analysis is to assess whether water harvesting significantly improves crop yields, and whether the type of water harvesting technology and the quality of the rainy season correlate with the change in yield. We find that water harvesting improves crop yields significantly, and that the relative impact of water harvesting on crop yields is largest in low rainfall years. Smallholder farmers may still be reluctant to invest in water harvesting, however, as in regions with low agricultural productivity the returns to investment are limited. Finally, our review of the literature suggests that there is only a limited number of studies that has systematically evaluated the crop yield impacts of water harvesting technologies. More work is needed to strengthen the scientific knowledge base.

Suggested Citation

  • Bouma, Jetske A. & Hegde, Seema S. & Lasage, Ralph, 2016. "Assessing the returns to water harvesting: A meta-analysis," Agricultural Water Management, Elsevier, vol. 163(C), pages 100-109.
  • Handle: RePEc:eee:agiwat:v:163:y:2016:i:c:p:100-109
    DOI: 10.1016/j.agwat.2015.08.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415300780
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.08.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barron, Jennie & Okwach, George, 2005. "Run-off water harvesting for dry spell mitigation in maize (Zea mays L.): results from on-farm research in semi-arid Kenya," Agricultural Water Management, Elsevier, vol. 74(1), pages 1-21, May.
    2. Ralph Lasage & Jeroen Aerts & Peter Verburg & Alemu Sileshi, 2015. "The role of small scale sand dams in securing water supply under climate change in Ethiopia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(2), pages 317-339, February.
    3. Hatibu, N. & Mutabazi, K. & Senkondo, E.M. & Msangi, A.S.K., 2006. "Economics of rainwater harvesting for crop enterprises in semi-arid areas of East Africa," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 74-86, February.
    4. Fox, P. & Rockstrom, J., 2003. "Supplemental irrigation for dry-spell mitigation of rainfed agriculture in the Sahel," Agricultural Water Management, Elsevier, vol. 61(1), pages 29-50, June.
    5. Moges, Girma & Hengsdijk, H. & Jansen, H.C., 2011. "Review and quantitative assessment of ex situ household rainwater harvesting systems in Ethiopia," Agricultural Water Management, Elsevier, vol. 98(8), pages 1215-1227, May.
    6. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    7. Bekele, Wagayehu & Drake, Lars, 2003. "Soil and water conservation decision behavior of subsistence farmers in the Eastern Highlands of Ethiopia: a case study of the Hunde-Lafto area," Ecological Economics, Elsevier, vol. 46(3), pages 437-451, October.
    8. Li, Xiao-Yan & Gong, Jia-Dong, 2002. "Effects of different ridge:furrow ratios and supplemental irrigation on crop production in ridge and furrow rainfall harvesting system with mulches," Agricultural Water Management, Elsevier, vol. 54(3), pages 243-254, April.
    9. Boers, Th. M. & Ben-Asher, J., 1982. "A review of rainwater harvesting," Agricultural Water Management, Elsevier, vol. 5(2), pages 145-158, July.
    10. Awulachew, Seleshi Bekele & Merrey, Douglas & Kamara, Abdul & van Koppen, Barbara & Penning de Vries, Frits & Boelee, Eline, 2005. "Experiences and opportunities for promoting small-scale/micro irrigation and rainwater harvesting for food security in Ethiopia," IWMI Working Papers H038044, International Water Management Institute.
    11. Araya, A. & Stroosnijder, L., 2010. "Effects of tied ridges and mulch on barley (Hordeum vulgare) rainwater use efficiency and production in Northern Ethiopia," Agricultural Water Management, Elsevier, vol. 97(6), pages 841-847, June.
    12. Fox, P. & Rockstrom, J. & Barron, J., 2005. "Risk analysis and economic viability of water harvesting for supplemental irrigation in semi-arid Burkina Faso and Kenya," Agricultural Systems, Elsevier, vol. 83(3), pages 231-250, March.
    13. Shiferaw, Bekele & Holden, Stein T., 2001. "Farm-level benefits to investments for mitigating land degradation: empirical evidence from Ethiopia," Environment and Development Economics, Cambridge University Press, vol. 6(3), pages 335-358, July.
    14. Glendenning, C.J. & van Ogtrop, F.F. & Mishra, A.K. & Vervoort, R.W., 2012. "Balancing watershed and local scale impacts of rain water harvesting in India—A review," Agricultural Water Management, Elsevier, vol. 107(C), pages 1-13.
    15. He, Xue-Feng & Cao, Huhua & Li, Feng-Min, 2007. "Econometric analysis of the determinants of adoption of rainwater harvesting and supplementary irrigation technology (RHSIT) in the semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 89(3), pages 243-250, May.
    16. Boers, Th. M. & De Graaf, M. & Feddes, R. A. & Ben-Asher, J., 1986. "A linear regression model combined with a soil water balance model to design micro-catchments for water harvesting in arid zones," Agricultural Water Management, Elsevier, vol. 11(3-4), pages 187-206, September.
    17. Christopher B. Barrett & Christine M. Moser & Oloro V. McHugh & Joeli Barison, 2004. "Better Technology, Better Plots, or Better Farmers? Identifying Changes in Productivity and Risk among Malagasy Rice Farmers," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 869-888.
    18. Nyakudya, I.W. & Stroosnijder, L., 2011. "Water management options based on rainfall analysis for rainfed maize (Zea mays L.) production in Rushinga district, Zimbabwe," Agricultural Water Management, Elsevier, vol. 98(10), pages 1649-1659, August.
    19. Rockström, Johan & Karlberg, Louise & Wani, Suhas P. & Barron, Jennie & Hatibu, Nuhu & Oweis, Theib & Bruggeman, Adriana & Farahani, Jalali & Qiang, Zhu, 2010. "Managing water in rainfed agriculture--The need for a paradigm shift," Agricultural Water Management, Elsevier, vol. 97(4), pages 543-550, April.
    20. Yuan, Tian & Fengmin, Li & Puhai, Liu, 2003. "Economic analysis of rainwater harvesting and irrigation methods, with an example from China," Agricultural Water Management, Elsevier, vol. 60(3), pages 217-226, May.
    21. Qi Wang & Enhe Zhang & Fengmin Li & Fengrui Li, 2008. "Runoff Efficiency and the Technique of Micro-water Harvesting with Ridges and Furrows, for Potato Production in Semi-arid Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1431-1443, October.
    22. Wang, Yajun & Xie, Zhongkui & Malhi, Sukhdev S. & Vera, Cecil L. & Zhang, Yubao & Wang, Jinniu, 2009. "Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 96(3), pages 374-382, March.
    23. Wang, Xiao-Ling & Li, Feng-Min & Jia, Yu & Shi, Wen-Quan, 2005. "Increasing potato yields with additional water and increased soil temperature," Agricultural Water Management, Elsevier, vol. 78(3), pages 181-194, December.
    24. Frank Steenbergen & Abraham Haile & Taye Alemehayu & Tena Alamirew & Yohannes Geleta, 2011. "Status and Potential of Spate Irrigation in Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(7), pages 1899-1913, May.
    25. Grewal, S. S. & Mittal, S. P. & Agnihotri, Y. & Dubey, L. N., 1989. "Rainwater harvesting for the management of agricultural droughts in the foothills of northern India," Agricultural Water Management, Elsevier, vol. 16(4), pages 309-322, November.
    26. R. Srivastava & K. Kannan & S. Mohanty & P. Nanda & N. Sahoo & R. Mohanty & M. Das, 2009. "Rainwater Management for Smallholder Irrigation and it’s Impact on Crop Yields in Eastern India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(7), pages 1237-1255, May.
    27. Bouma, Jetske A. & Biggs, Trent W. & Bouwer, Laurens M., 2011. "The downstream externalities of harvesting rainwater in semi-arid watersheds: An Indian case study," Agricultural Water Management, Elsevier, vol. 98(7), pages 1162-1170, May.
    28. Li, Xiao-Yan & Gong, Jia-Dong & Gao, Qian-Zhao & Li, Feng-Rui, 2001. "Incorporation of ridge and furrow method of rainfall harvesting with mulching for crop production under semiarid conditions," Agricultural Water Management, Elsevier, vol. 50(3), pages 173-183, September.
    29. Sur, H. S. & Bhardwaj, Anil & Jindal, P. K., 1999. "Some hydrological parameters for the design and operation of small earthen dams in lower Shiwaliks of northern India," Agricultural Water Management, Elsevier, vol. 42(1), pages 111-121, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deora, Shashank & Nanore, Gyanesh, 2019. "Socio economic impacts of Doha Model water harvesting structures in Jalna, Maharashtra," Agricultural Water Management, Elsevier, vol. 221(C), pages 141-149.
    2. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    3. Mourad, Khaldoon A. & Yimer, Sadame Mohammed, 2017. "Socio-economic Potential of Rainwater Harvesting in Ethiopia," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 6(1), February.
    4. Caroline King-Okumu, 2018. "Valuing Environmental Benefit Streams in the Dryland Ecosystems of Sub-Saharan Africa," Land, MDPI, vol. 7(4), pages 1-23, November.
    5. Francis Oremo & Richard Mulwa & Nicholas Oguge, 2021. "Sustainable water access and willingness of smallholder irrigators to pay for on-farm water storage systems in Tsavo sub-catchment, Kenya," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1371-1391, February.
    6. Meron Lakew Tefera & Giovanna Seddaiu & Alberto Carletti, 2024. "Traditional In Situ Water Harvesting Practices and Agricultural Sustainability in Sub-Saharan Africa—A Meta-Analysis," Sustainability, MDPI, vol. 16(15), pages 1-21, July.
    7. Yuying Pan & Xuebiao Pan & Tan Zi & Qi Hu & Jing Wang & Guolin Han & Jialin Wang & Zhihua Pan, 2019. "Optimal Ridge–Furrow Ratio for Maximum Drought Resilience of Sunflower in Semi-Arid Region of China," Sustainability, MDPI, vol. 11(15), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anantha, K.H. & Garg, Kaushal K. & Barron, Jennie & Dixit, Sreenath & Venkataradha, A. & Singh, Ramesh & Whitbread, Anthony M., 2021. "Impact of best management practices on sustainable crop production and climate resilience in smallholder farming systems of South Asia," Agricultural Systems, Elsevier, vol. 194(C).
    2. Saudamini Das, "undated". "Evaluating the Role of Media in Averting Heat Stroke Mortality: A Daily Panel Data Analysis," Working papers 102, The South Asian Network for Development and Environmental Economics.
    3. Oweis, T. & Hachum, A., 2009. "Water harvesting for improved rainfed agriculture in the dry environments," IWMI Books, Reports H041998, International Water Management Institute.
    4. Glendenning, C.J. & van Ogtrop, F.F. & Mishra, A.K. & Vervoort, R.W., 2012. "Balancing watershed and local scale impacts of rain water harvesting in India—A review," Agricultural Water Management, Elsevier, vol. 107(C), pages 1-13.
    5. Yildirim, Demet & Cemek, Bilal & Unlukara, Ali, 2022. "The effect of mulched ridge and furrow micro catchment water harvesting on red pepper yield and quality features in Bafra Plain of Northern Turkey," Agricultural Water Management, Elsevier, vol. 262(C).
    6. Wang, Jialin & Pan, Zhihua & Pan, Feifei & He, Di & Pan, Yuying & Han, Guolin & Huang, Na & Zhang, Ziyuan & Yin, Wenjuan & Zhang, Jiale & Peng, Ruiqi & Wang, Zizhong, 2020. "The regional water-conserving and yield-increasing characteristics and suitability of soil tillage practices in Northern China," Agricultural Water Management, Elsevier, vol. 228(C).
    7. Ralph Lasage & Jeroen Aerts & Peter Verburg & Alemu Sileshi, 2015. "The role of small scale sand dams in securing water supply under climate change in Ethiopia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(2), pages 317-339, February.
    8. Ren, Xiaolong & Jia, Zhikuan & Chen, Xiaoli, 2008. "Rainfall concentration for increasing corn production under semiarid climate," Agricultural Water Management, Elsevier, vol. 95(12), pages 1293-1302, December.
    9. Ali, Shahzad & Jan, Amanullah & Zhang, Peng & Khan, Muhammad Numan & Cai, Tei & Wei, Ting & Ren, Xiaolong & Jia, Qianmin & Han, Qingfang & Jia, Zhikuan, 2016. "Effects of ridge-covering mulches on soil water storage and maize production under simulated rainfall in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 178(C), pages 1-11.
    10. Getnet, Kindie & MacAlister, Charlotte, 2012. "Integrated innovations and recommendation domains: Paradigm for developing, scaling-out, and targeting rainwater management innovations," Ecological Economics, Elsevier, vol. 76(C), pages 34-41.
    11. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    12. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    13. Adekalu, K.O. & Balogun, J.A. & Aluko, O.B. & Okunade, D.A. & J.W.Gowing & Faborode, M.O., 2009. "Runoff water harvesting for dry spell mitigation for cowpea in the savannah belt of Nigeria," Agricultural Water Management, Elsevier, vol. 96(11), pages 1502-1508, November.
    14. Liu, Yi & Li, Shiqing & Chen, Fang & Yang, Shenjiao & Chen, Xinping, 2010. "Soil water dynamics and water use efficiency in spring maize (Zea mays L.) fields subjected to different water management practices on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 97(5), pages 769-775, May.
    15. Gu, Xiao-Bo & Li, Yuan-Nong & Du, Ya-Dan, 2018. "Effects of ridge-furrow film mulching and nitrogen fertilization on growth, seed yield and water productivity of winter oilseed rape (Brassica napus L.) in Northwestern China," Agricultural Water Management, Elsevier, vol. 200(C), pages 60-70.
    16. Zhang, Yan & Ma, Qian & Liu, Donghua & Sun, Lefeng & Ren, Xiaolong & Ali, Shahzad & Zhang, Peng & Jia, Zhikuan, 2018. "Effects of different fertilizer strategies on soil water utilization and maize yield in the ridge and furrow rainfall harvesting system in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 208(C), pages 414-421.
    17. Fan, Tinglu & Wang, Shuying & Li, Yongping & Yang, Xiaomei & Li, Shangzhong & Ma, Mingsheng, 2019. "Film mulched furrow-ridge water harvesting planting improves agronomic productivity and water use efficiency in Rainfed Areas," Agricultural Water Management, Elsevier, vol. 217(C), pages 1-10.
    18. Assefa, Shibeshi & Biazin, Birhanu & Muluneh, Alemayehu & Yimer, Fantaw & Haileslassie, Amare, 2016. "Rainwater harvesting for supplemental irrigation of onions in the southern dry lands of Ethiopia," Agricultural Water Management, Elsevier, vol. 178(C), pages 325-334.
    19. He, Xue-Feng & Cao, Huhua & Li, Feng-Min, 2007. "Econometric analysis of the determinants of adoption of rainwater harvesting and supplementary irrigation technology (RHSIT) in the semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 89(3), pages 243-250, May.
    20. Zhang, Feng & Zhang, Wenjuan & Li, Ming & Zhang, Yuan & Li, Fengmin & Li, Changbin, 2017. "Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change?," Agricultural Systems, Elsevier, vol. 150(C), pages 67-77.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:163:y:2016:i:c:p:100-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.