IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v178y2016icp325-334.html
   My bibliography  Save this article

Rainwater harvesting for supplemental irrigation of onions in the southern dry lands of Ethiopia

Author

Listed:
  • Assefa, Shibeshi
  • Biazin, Birhanu
  • Muluneh, Alemayehu
  • Yimer, Fantaw
  • Haileslassie, Amare

Abstract

Agricultural water scarcity is a major limiting factor for crop production in dry land regions of sub-Saharan Africa (SSA). Despite notable efforts of developing macro-catchment rainwater harvesting (RWH) techniques, few studies have evaluated the performance of RWH for deficit supplemental irrigation of crops. We examine the agro-meteorological risks such as late onset, early cessation, overall low rainfall amounts and long dry spells during the growing season and evaluate the potential of macro-catchment RWH for supplemental irrigation of onion in the southern dry lands of Ethiopia. Field experiments were undertaken during 2012 and 2013 to evaluate the effects of 50% ETc, 75% ETc and 100% ETc irrigation levels on yield and water productivity of onion during dry and wet seasons. The harvestable yield and water productivity of onion under 75% ETc irrigation were not significantly lower than that under 100% ETc irrigation during both the dry and wet seasons. Thus, deficit supplemental irrigation of onion at 75% ETc can be implemented with macro-catchment RWH to reduce the risks of crop failure and significant yield declines in dryland areas.

Suggested Citation

  • Assefa, Shibeshi & Biazin, Birhanu & Muluneh, Alemayehu & Yimer, Fantaw & Haileslassie, Amare, 2016. "Rainwater harvesting for supplemental irrigation of onions in the southern dry lands of Ethiopia," Agricultural Water Management, Elsevier, vol. 178(C), pages 325-334.
  • Handle: RePEc:eee:agiwat:v:178:y:2016:i:c:p:325-334
    DOI: 10.1016/j.agwat.2016.10.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416303973
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.10.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    2. Barron, Jennie & Okwach, George, 2005. "Run-off water harvesting for dry spell mitigation in maize (Zea mays L.): results from on-farm research in semi-arid Kenya," Agricultural Water Management, Elsevier, vol. 74(1), pages 1-21, May.
    3. Moges, Girma & Hengsdijk, H. & Jansen, H.C., 2011. "Review and quantitative assessment of ex situ household rainwater harvesting systems in Ethiopia," Agricultural Water Management, Elsevier, vol. 98(8), pages 1215-1227, May.
    4. Bekele, Samson & Tilahun, Ketema, 2007. "Regulated deficit irrigation scheduling of onion in a semiarid region of Ethiopia," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 148-152, April.
    5. Mohamed Elhakeem & Athanasios Papanicolaou, 2009. "Estimation of the Runoff Curve Number via Direct Rainfall Simulator Measurements in the State of Iowa, USA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(12), pages 2455-2473, September.
    6. Kadayifci, Abdullah & Tuylu, Gokhan Ismail & Ucar, Yusuf & Cakmak, Belgin, 2005. "Crop water use of onion (Allium cepa L.) in Turkey," Agricultural Water Management, Elsevier, vol. 72(1), pages 59-68, March.
    7. Wakeyo, Mekonnen B. & Gardebroek, Cornelis, 2013. "Does water harvesting induce fertilizer use among smallholders? Evidence from Ethiopia," Agricultural Systems, Elsevier, vol. 114(C), pages 54-63.
    8. Oweis, T. Y. & Hachum, A. Y., 2003. "Improving water productivity in the dry areas of West Asia and North Africa," IWMI Books, Reports H032642, International Water Management Institute.
    9. Igbadun, Henry E. & Ramalan, A.A. & Oiganji, Ezekiel, 2012. "Effects of regulated deficit irrigation and mulch on yield, water use and crop water productivity of onion in Samaru, Nigeria," Agricultural Water Management, Elsevier, vol. 109(C), pages 162-169.
    10. Rockström, Johan & Karlberg, Louise & Wani, Suhas P. & Barron, Jennie & Hatibu, Nuhu & Oweis, Theib & Bruggeman, Adriana & Farahani, Jalali & Qiang, Zhu, 2010. "Managing water in rainfed agriculture--The need for a paradigm shift," Agricultural Water Management, Elsevier, vol. 97(4), pages 543-550, April.
    11. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    12. Welderufael, W.A. & Le Roux, P.A.L. & Hensley, M., 2008. "Quantifying rainfall-runoff relationships on the Dera Calcic Fluvic Regosol ecotope in Ethiopia," Agricultural Water Management, Elsevier, vol. 95(11), pages 1223-1232, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Hong & Wang, Chenbing & Zhao, Xiumei & Wang, Falin, 2015. "Mulching increases water-use efficiency of peach production on the rainfed semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 154(C), pages 20-28.
    2. Kifle, Mulubrehan & Gebretsadikan, T.G., 2016. "Yield and water use efficiency of furrow irrigated potato under regulated deficit irrigation, Atsibi-Wemberta, North Ethiopia," Agricultural Water Management, Elsevier, vol. 170(C), pages 133-139.
    3. Bouma, Jetske A. & Hegde, Seema S. & Lasage, Ralph, 2016. "Assessing the returns to water harvesting: A meta-analysis," Agricultural Water Management, Elsevier, vol. 163(C), pages 100-109.
    4. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    5. Foster, T. & Brozović, N., 2018. "Simulating Crop-Water Production Functions Using Crop Growth Models to Support Water Policy Assessments," Ecological Economics, Elsevier, vol. 152(C), pages 9-21.
    6. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    7. Wang, Huabing & Xie, Tianyun & Yu, Xiaohong & Zhang, Chi, 2021. "Simulation of soil loss under different climatic conditions and agricultural farming economic benefits: The example of Yulin City on Loess Plateau," Agricultural Water Management, Elsevier, vol. 244(C).
    8. Igbadun, Henry E. & Ramalan, A.A. & Oiganji, Ezekiel, 2012. "Effects of regulated deficit irrigation and mulch on yield, water use and crop water productivity of onion in Samaru, Nigeria," Agricultural Water Management, Elsevier, vol. 109(C), pages 162-169.
    9. Carvajal, F. & Agüera, F. & Sánchez-Hermosilla, J., 2014. "Water balance in artificial on-farm agricultural water reservoirs for the irrigation of intensive greenhouse crops," Agricultural Water Management, Elsevier, vol. 131(C), pages 146-155.
    10. Abdul Malik & Abdul Sattar Shakir & Muhammad Ajmal & Muhammad Jamal Khan & Taj Ali Khan, 2017. "Assessment of AquaCrop Model in Simulating Sugar Beet Canopy Cover, Biomass and Root Yield under Different Irrigation and Field Management Practices in Semi-Arid Regions of Pakistan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4275-4292, October.
    11. Martínez-Romero, A. & Martínez-Navarro, A. & Pardo, J.J. & Montoya, F. & Domínguez, A., 2017. "Real farm management depending on the available volume of irrigation water (part II): Analysis of crop parameters and harvest quality," Agricultural Water Management, Elsevier, vol. 192(C), pages 58-70.
    12. Aimé Sévérin Kima & Etienne Kima & Bernard Bacyé & Paule A. W. Ouédraogo & Ousmane Traore & Seydou Traore & Hervé Nandkangré & Wen-Guey Chung & Yu-Min Wang, 2020. "Evaluating Supplementary Water Methodology with Saturated Soil Irrigation for Yield and Water Productivity Improvement in Semi-Arid Rainfed Rice System, Burkina Faso," Sustainability, MDPI, Open Access Journal, vol. 12(12), pages 1-17, June.
    13. Abd El-Mageed, Taia A. & Semida, Wael M. & Abd El-Wahed, Mohamed H., 2016. "Effect of mulching on plant water status, soil salinity and yield of squash under summer-fall deficit irrigation in salt affected soil," Agricultural Water Management, Elsevier, vol. 173(C), pages 1-12.
    14. Mirshadiev, Mirzokhid & Fleskens, Luuk & van Dam, Jos & Pulatov, Alim, 2018. "Scoping of promising land management and water use practices in the dry areas of Uzbekistan," Agricultural Water Management, Elsevier, vol. 207(C), pages 15-25.
    15. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    16. Chen, Baoqing & Liu, Enke & Mei, Xurong & Yan, Changrong & Garré, Sarah, 2018. "Modelling soil water dynamic in rain-fed spring maize field with plastic mulching," Agricultural Water Management, Elsevier, vol. 198(C), pages 19-27.
    17. Moges, Girma & Hengsdijk, H. & Jansen, H.C., 2011. "Review and quantitative assessment of ex situ household rainwater harvesting systems in Ethiopia," Agricultural Water Management, Elsevier, vol. 98(8), pages 1215-1227, May.
    18. Garg, N.K. & Dadhich, Sushmita M., 2014. "A proposed method to determine yield response factors of different crops under deficit irrigation using inverse formulation approach," Agricultural Water Management, Elsevier, vol. 137(C), pages 68-74.
    19. Wang, Xiquan & Nie, Jiangwen & Wang, Peixin & Zhao, Jie & Yang, Yadong & Wang, Shang & Zeng, Zhaohai & Zang, Huadong, 2021. "Does the replacement of chemical fertilizer nitrogen by manure benefit water use efficiency of winter wheat – summer maize systems?," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Sarkar, S. & Goswami, S.B. & Mallick, S. & Nanda, M.K., 2008. "Different indices to characterize water use pattern of micro-sprinkler irrigated onion (Allium cepa L.)," Agricultural Water Management, Elsevier, vol. 95(5), pages 625-632, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:178:y:2016:i:c:p:325-334. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/agwat .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.