IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v38y2009i4p601-610.html
   My bibliography  Save this article

Uncovered bargaining solutions

Author

Listed:
  • Michele Lombardi
  • Marco Mariotti

Abstract

An uncovered bargaining solution is a bargaining solution for which there exists a complete and strict relation (tournament) such that, for each feasible set, the bargaining solution set coincides with the uncovered set of the tournament. We provide a characterization of a class of uncovered bargaining solutions.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Michele Lombardi & Marco Mariotti, 2009. "Uncovered bargaining solutions," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(4), pages 601-610, November.
  • Handle: RePEc:spr:jogath:v:38:y:2009:i:4:p:601-610
    DOI: 10.1007/s00182-009-0172-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00182-009-0172-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00182-009-0172-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Michele Lombardi, 2008. "Uncovered set choice rules," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 31(2), pages 271-279, August.
    2. Peters, Hans & Wakker, Peter, 1991. "Independence of Irrelevant Alternatives and Revealed Group Preferences," Econometrica, Econometric Society, vol. 59(6), pages 1787-1801, November.
    3. Kim, Taesung & Richter, Marcel K., 1986. "Nontransitive-nontotal consumer theory," Journal of Economic Theory, Elsevier, vol. 38(2), pages 324-363, April.
    4. Marco Mariotti, 1999. "Fair Bargains: Distributive Justice and Nash Bargaining Theory," Review of Economic Studies, Oxford University Press, vol. 66(3), pages 733-741.
    5. Lin Zhou, 1997. "The Nash Bargaining Theory with Non-Convex Problems," Econometrica, Econometric Society, vol. 65(3), pages 681-686, May.
    6. Fuad Aleskerov & Denis Bouyssou & Bernard Monjardet, 2007. "Utility Maximization, Choice and Preference," Springer Books, Springer, edition 0, number 978-3-540-34183-3, September.
    7. Banks, Jeffrey S. & Duggan, John & Le Breton, Michel, 2003. "Social Choice and Electoral Competition in the General Spatial Model," IDEI Working Papers 188, Institut d'Économie Industrielle (IDEI), Toulouse.
    8. Peters, H.J.M. & Vermeulen, A.J., 2006. "WPO, COV and IIA bargaining solutions," Research Memorandum 021, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    9. Vincenzo Denicolò & Marco Mariotti, 2000. "Nash Bargaining Theory, Nonconvex Problems and Social Welfare Orderings," Theory and Decision, Springer, vol. 48(4), pages 351-358, June.
    10. Ehlers, Lars & Sprumont, Yves, 2008. "Weakened WARP and top-cycle choice rules," Journal of Mathematical Economics, Elsevier, vol. 44(1), pages 87-94, January.
    11. Marco Mariotti, 1998. "Nash bargaining theory when the number of alternatives can be finite," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 15(3), pages 413-421.
    12. Banks, Jeffrey S. & Duggan, John & Le Breton, Michel, 2006. "Social choice and electoral competition in the general spatial model," Journal of Economic Theory, Elsevier, vol. 126(1), pages 194-234, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Yongsheng & Yoshihara, Naoki, 2013. "Rationality and solutions to nonconvex bargaining problems: Rationalizability and Nash solutions," Mathematical Social Sciences, Elsevier, vol. 66(1), pages 66-70.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yongsheng & Yoshihara, Naoki, 2013. "Rationality and solutions to nonconvex bargaining problems: Rationalizability and Nash solutions," Mathematical Social Sciences, Elsevier, vol. 66(1), pages 66-70.
    2. Yongsheng Xu & Naoki Yoshihara, 2020. "Nonconvex Bargaining Problems: Some Recent Developments," Homo Oeconomicus: Journal of Behavioral and Institutional Economics, Springer, vol. 37(1), pages 7-41, November.
    3. Yongsheng Xu & Naoki Yoshihara, 0. "Nonconvex Bargaining Problems: Some Recent Developments," Homo Oeconomicus: Journal of Behavioral and Institutional Economics, Springer, vol. 0, pages 1-35.
    4. Paola Manzini & Marco Mariotti, 2006. "Two-stage Bargaining Solutions," Working Papers 572, Queen Mary University of London, School of Economics and Finance.
    5. Xu, Yongsheng & Yoshihara, Naoki, 2011. "Proportional Nash solutions - A new and procedural analysis of nonconvex bargaining problems," Discussion Paper Series 552, Institute of Economic Research, Hitotsubashi University.
    6. Zambrano, Eduardo, 2016. "‘Vintage’ Nash bargaining without convexity," Economics Letters, Elsevier, vol. 141(C), pages 32-34.
    7. Attanasi, Giuseppe & Corazzini, Luca & Passarelli, Francesco, 2017. "Voting as a lottery," Journal of Public Economics, Elsevier, vol. 146(C), pages 129-137.
    8. Cheng-Zhong Qin & Shuzhong Shi & Guofu Tan, 2015. "Nash bargaining for log-convex problems," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(3), pages 413-440, April.
    9. Yongsheng Xu & Naoki Yoshihara, 2019. "An equitable Nash solution to nonconvex bargaining problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(3), pages 769-779, September.
    10. Duggan, John, 2011. "General conditions for the existence of maximal elements via the uncovered set," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 755-759.
    11. De Donder, Philippe & Le Breton, Michel & Peluso, Eugenio, 2010. "Majority Voting in Multidimensional Policy Spaces: Kramer-Shepsle versus Stackelberg," IDEI Working Papers 593, Institut d'Économie Industrielle (IDEI), Toulouse.
    12. Mihara, H. Reiju, 2004. "Nonanonymity and sensitivity of computable simple games," Mathematical Social Sciences, Elsevier, vol. 48(3), pages 329-341, November.
    13. Peters, Hans & Wakker, Peter, 1996. "Cycle-preserving extension of demand functions to new commodities," Journal of Mathematical Economics, Elsevier, vol. 25(3), pages 281-290.
    14. Xefteris, Dimitrios, 2017. "Multidimensional electoral competition between differentiated candidates," Games and Economic Behavior, Elsevier, vol. 105(C), pages 112-121.
    15. David H. Wolpert & James Bono, 2010. "A theory of unstructured bargaining using distribution-valued solution concepts," Working Papers 2010-14, American University, Department of Economics.
    16. Alcantud, Jose C.R., 2006. "Maximality with or without binariness: Transfer-type characterizations," Mathematical Social Sciences, Elsevier, vol. 51(2), pages 182-191, March.
    17. Luís Carvalho, 2014. "A Constructive Proof of the Nash Bargaining Solution," Working Papers Series 2 14-01, ISCTE-IUL, Business Research Unit (BRU-IUL).
    18. Marco Mariotii, 1996. "Fair bargains: distributive justice and Nash Bargaining Theory," Game Theory and Information 9611003, University Library of Munich, Germany, revised 06 Dec 1996.
    19. Michele Lombardi, 2009. "Minimal covering set solutions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 32(4), pages 687-695, May.
    20. Lombardi, Michele & Yoshihara, Naoki, 2010. "Alternative characterizations of the proportional solution for nonconvex bargaining problems with claims," Economics Letters, Elsevier, vol. 108(2), pages 229-232, August.

    More about this item

    Keywords

    Bargaining; Tournaments; Uncovered set; Non-convex problems; C72; D44;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D44 - Microeconomics - - Market Structure, Pricing, and Design - - - Auctions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:38:y:2009:i:4:p:601-610. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.