IDEAS home Printed from https://ideas.repec.org/p/amu/wpaper/2010-14.html
   My bibliography  Save this paper

A theory of unstructured bargaining using distribution-valued solution concepts

Author

Listed:
  • David H. Wolpert
  • James Bono

Abstract

In experiments it is typically found that many joint utility outcomes arise in any given unstructured bargaining game. This suggests using a positive unstructured bargaining concept that maps a bargaining game to a probability distribution over outcomes rather than to a single outcome. We show how to "translate" Nash's bargaining axioms to apply to such distributional bargaining concepts. We then prove that a subset of those axioms forces the distribution over outcomes to be a power-law. Unlike Nash's original result, our result holds even if the feasible set is finite. When the feasible set is convex and comprehensive, the mode of the power law distribution is the Harsanyi bargaining solution, and if we require symmetry it is the Nash bargaining solution. However in general these modes of the joint utility distribution are not Bayes-optimal predictions for the joint uitlity, nor are the bargains corresponding to those outcomes the most likely bargains. We then show how an external regulator can use distributional solution concepts to optimally design an unstructured bargaining scenario. Throughout we demonstrate our analysis in computational experiments involving flight rerouting negotiations in the National Airspace System.

Suggested Citation

  • David H. Wolpert & James Bono, 2010. "A theory of unstructured bargaining using distribution-valued solution concepts," Working Papers 2010-14, American University, Department of Economics.
  • Handle: RePEc:amu:wpaper:2010-14
    DOI: 10.17606/6vxv-0q69
    as

    Download full text from publisher

    File URL: https://doi.org/10.17606/6vxv-0q69
    File Function: First version, 2010
    Download Restriction: no

    File URL: https://libkey.io/10.17606/6vxv-0q69?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Özgür Kıbrıs & Murat Sertel, 2007. "Bargaining over a finite set of alternatives," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 28(3), pages 421-437, April.
    2. Herrero, Maria Jose, 1989. "The nash program: Non-convex bargaining problems," Journal of Economic Theory, Elsevier, vol. 49(2), pages 266-277, December.
    3. Rubinstein, Ariel & Safra, Zvi & Thomson, William, 1992. "On the Interpretation of the Nash Bargaining Solution and Its Extension to Non-expected Utility Preferences," Econometrica, Econometric Society, vol. 60(5), pages 1171-1186, September.
    4. Kalai, Ehud, 1977. "Proportional Solutions to Bargaining Situations: Interpersonal Utility Comparisons," Econometrica, Econometric Society, vol. 45(7), pages 1623-1630, October.
    5. Lin Zhou, 1997. "The Nash Bargaining Theory with Non-Convex Problems," Econometrica, Econometric Society, vol. 65(3), pages 681-686, May.
    6. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    7. Conley, John P. & Wilkie, Simon, 1996. "An Extension of the Nash Bargaining Solution to Nonconvex Problems," Games and Economic Behavior, Elsevier, vol. 13(1), pages 26-38, March.
    8. Binmore, Ken & Swierzbinski, Joe & Hsu, Steven & Proulx, Chris, 1993. "Focal Points and Bargaining," International Journal of Game Theory, Springer;Game Theory Society, vol. 22(4), pages 381-409.
    9. David H. Wolpert & James Bono, 2010. "Distribution-Valued Solution Concepts," Working Papers 2010-13, American University, Department of Economics.
    10. Xu, Yongsheng & Yoshihara, Naoki, 2006. "Alternative characterizations of three bargaining solutions for nonconvex problems," Games and Economic Behavior, Elsevier, vol. 57(1), pages 86-92, October.
    11. Peters, H.J.M. & Vermeulen, A.J., 2006. "WPO, COV and IIA bargaining solutions," Research Memorandum 021, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    12. Smith, Vernon L & Suchanek, Gerry L & Williams, Arlington W, 1988. "Bubbles, Crashes, and Endogenous Expectations in Experimental Spot Asset Markets," Econometrica, Econometric Society, vol. 56(5), pages 1119-1151, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongsheng Xu & Naoki Yoshihara, 2020. "Nonconvex Bargaining Problems: Some Recent Developments," Homo Oeconomicus: Journal of Behavioral and Institutional Economics, Springer, vol. 37(1), pages 7-41, November.
    2. Xu, Yongsheng & Yoshihara, Naoki, 2011. "Proportional Nash solutions - A new and procedural analysis of nonconvex bargaining problems," Discussion Paper Series 552, Institute of Economic Research, Hitotsubashi University.
    3. Marco Mariotii, 1996. "Fair bargains: distributive justice and Nash Bargaining Theory," Game Theory and Information 9611003, University Library of Munich, Germany, revised 06 Dec 1996.
    4. Yongsheng Xu & Naoki Yoshihara, 2019. "An equitable Nash solution to nonconvex bargaining problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(3), pages 769-779, September.
    5. Cheng-Zhong Qin & Shuzhong Shi & Guofu Tan, 2015. "Nash bargaining for log-convex problems," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(3), pages 413-440, April.
    6. Samuel Danthine & Noemí Navarro, 2013. "How to Add Apples and Pears: Non-Symmetric Nash Bargaining and the Generalized Joint Surplus," Economics Bulletin, AccessEcon, vol. 33(4), pages 2840-2850.
    7. John Conley & Simon Wilkie, 2012. "The ordinal egalitarian bargaining solution for finite choice sets," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(1), pages 23-42, January.
    8. Simon, Jenny & Valasek, Justin, 2012. "Efficient Fiscal Spending by Supranational Unions," SITE Working Paper Series 20, Stockholm School of Economics, Stockholm Institute of Transition Economics, revised 11 Dec 2012.
    9. Xu, Yongsheng & Yoshihara, Naoki, 2006. "Alternative characterizations of three bargaining solutions for nonconvex problems," Games and Economic Behavior, Elsevier, vol. 57(1), pages 86-92, October.
    10. Serrano, Roberto & Shimomura, Ken-Ichi, 1998. "Beyond Nash Bargaining Theory: The Nash Set," Journal of Economic Theory, Elsevier, vol. 83(2), pages 286-307, December.
    11. Jenny Simon & Justin Mattias Valasek, 2017. "Centralized Fiscal Spending by Supranational Unions," Economica, London School of Economics and Political Science, vol. 84(333), pages 78-103, January.
    12. Hans Peters & Dries Vermeulen, 2012. "WPO, COV and IIA bargaining solutions for non-convex bargaining problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(4), pages 851-884, November.
    13. Xu, Yongsheng & Yoshihara, Naoki, 2013. "Rationality and solutions to nonconvex bargaining problems: Rationalizability and Nash solutions," Mathematical Social Sciences, Elsevier, vol. 66(1), pages 66-70.
    14. Sudhölter, Peter & Zarzuelo, José M., 2013. "Extending the Nash solution to choice problems with reference points," Games and Economic Behavior, Elsevier, vol. 80(C), pages 219-228.
    15. Alfredo Valencia-Toledo & Juan Vidal-Puga, 2020. "A sequential bargaining protocol for land rental arrangements," Review of Economic Design, Springer;Society for Economic Design, vol. 24(1), pages 65-99, June.
    16. Herings, P. Jean-Jacques & Predtetchinski, Arkadi, 2015. "Bargaining with non-convexities," Games and Economic Behavior, Elsevier, vol. 90(C), pages 151-161.
    17. Jenny Simon & Justin Mattias Valasek, 2013. "Centralized Fiscal Spending by Supranational Unions," CESifo Working Paper Series 4321, CESifo.
    18. Carlos Alós-Ferrer & Jaume García-Segarra & Miguel Ginés-Vilar, 2018. "Anchoring on Utopia: a generalization of the Kalai–Smorodinsky solution," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 6(2), pages 141-155, October.
    19. l'Haridon, Olivier & Malherbet, Franck & Pérez-Duarte, Sébastien, 2013. "Does bargaining matter in the small firms matching model?," Labour Economics, Elsevier, vol. 21(C), pages 42-58.
    20. Driesen, Bram & Lombardi, Michele & Peters, Hans, 2016. "Feasible sets, comparative risk aversion, and comparative uncertainty aversion in bargaining," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 162-170.

    More about this item

    Keywords

    JEL Codes:;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:amu:wpaper:2010-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Meal (email available below). General contact details of provider: http://www.american.edu/cas/economics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.