IDEAS home Printed from https://ideas.repec.org/p/hit/hituec/680.html
   My bibliography  Save this paper

An Equitable Nash Solution to Nonconvex Bargaining Problems

Author

Listed:
  • Xu, Yongsheng
  • Yoshihara, Naoki

Abstract

This paper studies the Nash solution to non-convex bargaining problems. Given the multiplicity of the Nash solution in this context, we refine the Nash solution by incorporating an equity consideration. The proposed refinement is defined as the composition of the Nash solution and a variant of the Kalai-Smorodinsky solution. We then present an axiomatic characterization of the new solution.

Suggested Citation

  • Xu, Yongsheng & Yoshihara, Naoki, 2018. "An Equitable Nash Solution to Nonconvex Bargaining Problems," Discussion Paper Series 680, Institute of Economic Research, Hitotsubashi University.
  • Handle: RePEc:hit:hituec:680
    as

    Download full text from publisher

    File URL: https://hermes-ir.lib.hit-u.ac.jp/hermes/ir/re/29632/DP680.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hans Peters & Dries Vermeulen, 2012. "WPO, COV and IIA bargaining solutions for non-convex bargaining problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(4), pages 851-884, November.
    2. Lombardi, Michele & Yoshihara, Naoki, 2010. "Alternative characterizations of the proportional solution for nonconvex bargaining problems with claims," Economics Letters, Elsevier, vol. 108(2), pages 229-232, August.
    3. Conley, John P. & Wilkie, Simon, 1991. "The bargaining problem without convexity : Extending the egalitarian and Kalai-Smorodinsky solutions," Economics Letters, Elsevier, vol. 36(4), pages 365-369, August.
    4. Kalai, Ehud & Smorodinsky, Meir, 1975. "Other Solutions to Nash's Bargaining Problem," Econometrica, Econometric Society, vol. 43(3), pages 513-518, May.
    5. Marco Mariotti, 1999. "Fair Bargains: Distributive Justice and Nash Bargaining Theory," Review of Economic Studies, Oxford University Press, vol. 66(3), pages 733-741.
    6. Lin Zhou, 1997. "The Nash Bargaining Theory with Non-Convex Problems," Econometrica, Econometric Society, vol. 65(3), pages 681-686, May.
    7. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    8. Hammond, Peter J, 1976. "Equity, Arrow's Conditions, and Rawls' Difference Principle," Econometrica, Econometric Society, vol. 44(4), pages 793-804, July.
    9. Yoshihara, Naoki, 2003. "Characterizations of bargaining solutions in production economies with unequal skills," Journal of Economic Theory, Elsevier, vol. 108(2), pages 256-285, February.
    10. Yongsheng Xu & Naoki Yoshihara, 2008. "The Behaviour Of Solutions To Bargaining Problems On The Basis Of Solidarity," The Japanese Economic Review, Japanese Economic Association, vol. 59(1), pages 133-138, March.
    11. Paola Manzini & Marco Mariotti, 2006. "Two-stage Bargaining Solutions," Working Papers 572, Queen Mary University of London, School of Economics and Finance.
    12. Xu, Yongsheng & Yoshihara, Naoki, 2013. "Rationality and solutions to nonconvex bargaining problems: Rationalizability and Nash solutions," Mathematical Social Sciences, Elsevier, vol. 66(1), pages 66-70.
    13. Amartya K. Sen, 1971. "Choice Functions and Revealed Preference," Review of Economic Studies, Oxford University Press, vol. 38(3), pages 307-317.
    14. Paola Manzini & Marco Mariotti, 2007. "Sequentially Rationalizable Choice," American Economic Review, American Economic Association, vol. 97(5), pages 1824-1839, December.
    15. Herrero, Maria Jose, 1989. "The nash program: Non-convex bargaining problems," Journal of Economic Theory, Elsevier, vol. 49(2), pages 266-277, December.
    16. Marco Mariotti, 1998. "Nash bargaining theory when the number of alternatives can be finite," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 15(3), pages 413-421.
    17. Makoto Tanaka & Ryo-ichi Nagahisa, 2002. "An axiomatization of the Kalai-Smorodinsky solution when the feasible sets can be finite," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 19(4), pages 751-761.
    18. Conley, John P. & Wilkie, Simon, 1996. "An Extension of the Nash Bargaining Solution to Nonconvex Problems," Games and Economic Behavior, Elsevier, vol. 13(1), pages 26-38, March.
    19. Tadenuma, Koichi, 2002. "Efficiency First or Equity First? Two Principles and Rationality of Social Choice," Journal of Economic Theory, Elsevier, vol. 104(2), pages 462-472, June.
    20. Xu, Yongsheng & Yoshihara, Naoki, 2006. "Alternative characterizations of three bargaining solutions for nonconvex problems," Games and Economic Behavior, Elsevier, vol. 57(1), pages 86-92, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongsheng Xu & Naoki Yoshihara, 2020. "Nonconvex Bargaining Problems: Some Recent Developments," Homo Oeconomicus: Journal of Behavioral and Institutional Economics, Springer, vol. 37(1), pages 7-41, November.
    2. Yongsheng Xu & Naoki Yoshihara, 0. "Nonconvex Bargaining Problems: Some Recent Developments," Homo Oeconomicus: Journal of Behavioral and Institutional Economics, Springer, vol. 0, pages 1-35.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongsheng Xu & Naoki Yoshihara, 2020. "Nonconvex Bargaining Problems: Some Recent Developments," Homo Oeconomicus: Journal of Behavioral and Institutional Economics, Springer, vol. 37(1), pages 7-41, November.
    2. Xu, Yongsheng & Yoshihara, Naoki, 2011. "Proportional Nash solutions - A new and procedural analysis of nonconvex bargaining problems," Discussion Paper Series 552, Institute of Economic Research, Hitotsubashi University.
    3. Yongsheng Xu & Naoki Yoshihara, 0. "Nonconvex Bargaining Problems: Some Recent Developments," Homo Oeconomicus: Journal of Behavioral and Institutional Economics, Springer, vol. 0, pages 1-35.
    4. Lombardi, Michele & Yoshihara, Naoki, 2010. "Alternative characterizations of the proportional solution for nonconvex bargaining problems with claims," Economics Letters, Elsevier, vol. 108(2), pages 229-232, August.
    5. Cheng-Zhong Qin & Shuzhong Shi & Guofu Tan, 2015. "Nash bargaining for log-convex problems," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(3), pages 413-440, April.
    6. Xu, Yongsheng & Yoshihara, Naoki, 2006. "Alternative characterizations of three bargaining solutions for nonconvex problems," Games and Economic Behavior, Elsevier, vol. 57(1), pages 86-92, October.
    7. Fabio Galeotti & Maria Montero & Anders Poulsen, 2017. "The attraction and compromise effects in bargaining: Experimental evidence," Working Paper series, University of East Anglia, Centre for Behavioural and Experimental Social Science (CBESS) 17-04, School of Economics, University of East Anglia, Norwich, UK..
    8. Luís Carvalho, 2014. "A Constructive Proof of the Nash Bargaining Solution," Working Papers Series 2 14-01, ISCTE-IUL, Business Research Unit (BRU-IUL).
    9. Xu, Yongsheng & Yoshihara, Naoki, 2013. "Rationality and solutions to nonconvex bargaining problems: Rationalizability and Nash solutions," Mathematical Social Sciences, Elsevier, vol. 66(1), pages 66-70.
    10. Zambrano, Eduardo, 2016. "‘Vintage’ Nash bargaining without convexity," Economics Letters, Elsevier, vol. 141(C), pages 32-34.
    11. Marco Mariotii, 1996. "Fair bargains: distributive justice and Nash Bargaining Theory," Game Theory and Information 9611003, University Library of Munich, Germany, revised 06 Dec 1996.
    12. Y. H. Gu & M. Goh & Q. L. Chen & R. D. Souza & G. C. Tang, 2013. "A new two-party bargaining mechanism," Journal of Combinatorial Optimization, Springer, vol. 25(1), pages 135-163, January.
    13. Samuel Danthine & Noemí Navarro, 2013. "How to Add Apples and Pears: Non-Symmetric Nash Bargaining and the Generalized Joint Surplus," Economics Bulletin, AccessEcon, vol. 33(4), pages 2840-2850.
    14. Hans Peters & Dries Vermeulen, 2012. "WPO, COV and IIA bargaining solutions for non-convex bargaining problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(4), pages 851-884, November.
    15. Sudhölter, Peter & Zarzuelo, José M., 2013. "Extending the Nash solution to choice problems with reference points," Games and Economic Behavior, Elsevier, vol. 80(C), pages 219-228.
    16. Herings, P. Jean-Jacques & Predtetchinski, Arkadi, 2015. "Bargaining with non-convexities," Games and Economic Behavior, Elsevier, vol. 90(C), pages 151-161.
    17. Alfredo Valencia-Toledo & Juan Vidal-Puga, 2020. "A sequential bargaining protocol for land rental arrangements," Review of Economic Design, Springer;Society for Economic Design, vol. 24(1), pages 65-99, June.
    18. Simon, Jenny & Valasek, Justin, 2012. "Efficient Fiscal Spending by Supranational Unions," SITE Working Paper Series 20, Stockholm School of Economics, Stockholm Institute of Transition Economics, revised 11 Dec 2012.
    19. Fischer, Christian & Normann, Hans-Theo, 2019. "Collusion and bargaining in asymmetric Cournot duopoly—An experiment," European Economic Review, Elsevier, vol. 111(C), pages 360-379.
    20. Jenny Simon & Justin Mattias Valasek, 2013. "Centralized Fiscal Spending by Supranational Unions," CESifo Working Paper Series 4321, CESifo.

    More about this item

    Keywords

    non-convex bargaining problem; Nash solution; equitable Nash solution; equity principle; binary weak axiom of revealed preference;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory
    • D6 - Microeconomics - - Welfare Economics
    • D7 - Microeconomics - - Analysis of Collective Decision-Making

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hit:hituec:680. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/iehitjp.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hiromichi Miyake (email available below). General contact details of provider: https://edirc.repec.org/data/iehitjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.