IDEAS home Printed from https://ideas.repec.org/a/spr/jknowl/v16y2025i2d10.1007_s13132-024-02232-0.html
   My bibliography  Save this article

The Impact of ICT on Energy Consumption: Investigating the Roles of ICT Dimensions, Economic Development, and Energy Sources Across Low-, Middle-, and High-Income Countries

Author

Listed:
  • Kizito Uyi Ehigiamusoe

    (University of Southampton Malaysia)

  • Suresh Ramakrishnan

    (Universiti Teknologi Malaysia
    Sohar University)

  • Abdul Rahim Ridzuan

    (Universiti Teknologi MARA
    Universiti Teknologi MARA
    Accounting Research Institute (ARI), University Teknologi MARA
    Universiti Malaysia Sabah)

  • Naila Erum

    (Accounting Research Institute, Universiti Teknologi, MARA)

  • Daouia Chebab

    (University of Bahrain)

Abstract

This study provides insights into three issues regarding the nexus between information and communication technology (ICT) and energy consumption. First, what are the impacts of different dimensions of ICT development (i.e., fixed telephone subscriptions, mobile cellular subscriptions, fixed broadband subscriptions, and internet usage) on energy consumption? Second, how does ICT development influence energy consumption in nations with different levels of economic development? Third, how does ICT development affect renewable and non-renewable energy consumption? Using the generalized method of moments (GMM) on the panel data of 132 countries, this study indicates that fixed telephone subscriptions, mobile cellular subscriptions, and internet usage have positive impacts on energy consumption, while fixed broadband subscriptions have negative impacts. However, when the panel was split, the analysis reveals that mobile cellular subscriptions and internet usage positively influence energy consumption in high-income countries, while the impact is negative in low and middle-income countries. Moreover, when energy consumption was disaggregated, the analysis reveals that ICT dimensions have positive effects on renewable energy consumption, whereas ICT dimensions (except for fixed telephone subscriptions) have negative effects on non-renewable energy consumption. This study implies that ICT development is a fundamental determinant of energy consumption. Based on the empirical outcomes, this study recommends some policy options.

Suggested Citation

  • Kizito Uyi Ehigiamusoe & Suresh Ramakrishnan & Abdul Rahim Ridzuan & Naila Erum & Daouia Chebab, 2025. "The Impact of ICT on Energy Consumption: Investigating the Roles of ICT Dimensions, Economic Development, and Energy Sources Across Low-, Middle-, and High-Income Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 16(2), pages 9018-9044, June.
  • Handle: RePEc:spr:jknowl:v:16:y:2025:i:2:d:10.1007_s13132-024-02232-0
    DOI: 10.1007/s13132-024-02232-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13132-024-02232-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13132-024-02232-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Sakiru Adebola Solarin & Muhammad Shahbaz & Habib Nawaz Khan & Radzuan Bin Razali, 2021. "ICT, Financial Development, Economic Growth and Electricity Consumption: New Evidence from Malaysia," Global Business Review, International Management Institute, vol. 22(4), pages 941-962, August.
    2. Shaari, Mohd Shahidan & Majekodunmi, Temitayo B. & Zainal, Nor Fadzilah & Harun, Nor Hidayah & Ridzuan, Abdul Rahim, 2023. "The linkage between natural gas consumption and industrial output: New evidence based on time series analysis," Energy, Elsevier, vol. 284(C).
    3. Lin, Boqiang & Chen, Yufang, 2019. "Does electricity price matter for innovation in renewable energy technologies in China?," Energy Economics, Elsevier, vol. 78(C), pages 259-266.
    4. Chang, Lei & Taghizadeh-Hesary, Farhad & Saydaliev, Hayot Berk, 2022. "How do ICT and renewable energy impact sustainable development?," Renewable Energy, Elsevier, vol. 199(C), pages 123-131.
    5. Bakirtas, Tahsin & Akpolat, Ahmet Gökçe, 2020. "The relationship between crude oil exports, crude oil prices and military expenditures in some OPEC countries," Resources Policy, Elsevier, vol. 67(C).
    6. Xie, Lunyu & Yan, Haosheng & Zhang, Shuhan & Wei, Chu, 2020. "Does urbanization increase residential energy use? Evidence from the Chinese residential energy consumption survey 2012," China Economic Review, Elsevier, vol. 59(C).
    7. Cho, Youngsang & Lee, Jongsu & Kim, Tai-Yoo, 2007. "The impact of ICT investment and energy price on industrial electricity demand: Dynamic growth model approach," Energy Policy, Elsevier, vol. 35(9), pages 4730-4738, September.
    8. Lee, Chi-Chuan & Lee, Chien-Chiang, 2022. "How does green finance affect green total factor productivity? Evidence from China," Energy Economics, Elsevier, vol. 107(C).
    9. Zheng, Jiajia & Wang, Xingwu, 2021. "Can mobile information communication technologies (ICTs) promote the development of renewables?-evidence from seven countries," Energy Policy, Elsevier, vol. 149(C).
    10. Tobechi F. Agbanike & Chinazaekpere Nwani & Uwazie I. Uwazie & Lasbrey I. Anochiwa & Michael O. Enyoghasim, 2019. "Banking Sector Development and Energy Consumption in Nigeria: Exploring the Causal Relationship and its Implications," African Development Review, African Development Bank, vol. 31(3), pages 292-306, September.
    11. Lee, Chien-Chiang & He, Zhi-Wen & Xiao, Fu, 2022. "How does information and communication technology affect renewable energy technology innovation? International evidence," Renewable Energy, Elsevier, vol. 200(C), pages 546-557.
    12. Takase, Kae & Murota, Yasuhiro, 2004. "The impact of IT investment on energy: Japan and US comparison in 2010," Energy Policy, Elsevier, vol. 32(11), pages 1291-1301, July.
    13. Taha Zaghdoudi, 2017. "Internet usage, renewable energy, electricity consumption and economic growth : Evidence from developed countries," Economics Bulletin, AccessEcon, vol. 37(3), pages 1612-1619.
    14. Cole, Matthew A., 2006. "Does trade liberalization increase national energy use?," Economics Letters, Elsevier, vol. 92(1), pages 108-112, July.
    15. Bano, Sadia & Liu, Lu & Khan, Anwar, 2022. "Dynamic influence of aging, industrial innovations, and ICT on tourism development and renewable energy consumption in BRICS economies," Renewable Energy, Elsevier, vol. 192(C), pages 431-442.
    16. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    17. Zhang, Mingming & Zhang, Shichang & Lee, Chien-Chiang & Zhou, Dequn, 2021. "Effects of trade openness on renewable energy consumption in OECD countries: New insights from panel smooth transition regression modelling," Energy Economics, Elsevier, vol. 104(C).
    18. Røpke, Inge & Haunstrup Christensen, Toke & Ole Jensen, Jesper, 2010. "Information and communication technologies - A new round of household electrification," Energy Policy, Elsevier, vol. 38(4), pages 1764-1773, April.
    19. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    20. Sadorsky, Perry, 2012. "Information communication technology and electricity consumption in emerging economies," Energy Policy, Elsevier, vol. 48(C), pages 130-136.
    21. Dehghan Shabani, Zahra & Shahnazi, Rouhollah, 2019. "Energy consumption, carbon dioxide emissions, information and communications technology, and gross domestic product in Iranian economic sectors: A panel causality analysis," Energy, Elsevier, vol. 169(C), pages 1064-1078.
    22. Nina Czernich & Oliver Falck & Tobias Kretschmer & Ludger Woessmann, 2011. "Broadband Infrastructure and Economic Growth," Economic Journal, Royal Economic Society, vol. 121(552), pages 505-532, May.
    23. Steffen, Bjarne, 2018. "The importance of project finance for renewable energy projects," Energy Economics, Elsevier, vol. 69(C), pages 280-294.
    24. Botang Han & Dong Wang & Weina Ding & Lei Han, 2016. "Effect of information and communication technology on energy consumption in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 297-315, November.
    25. Chiu, Yi-Bin & Lee, Chien-Chiang, 2020. "Effects of financial development on energy consumption: The role of country risks," Energy Economics, Elsevier, vol. 90(C).
    26. Kais Saidi & Hassen Toumi & Saida Zaidi, 2017. "Impact of Information Communication Technology and Economic Growth on the Electricity Consumption: Empirical Evidence from 67 Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 8(3), pages 789-803, September.
    27. Lee, Chien-Chiang & Yuan, Zihao & Wang, Qiaoru, 2022. "How does information and communication technology affect energy security? International evidence," Energy Economics, Elsevier, vol. 109(C).
    28. Patrick Schulte & Heinz Welsch & Sascha Rexhäuser, 2016. "ICT and the Demand for Energy: Evidence from OECD Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(1), pages 119-146, January.
    29. Bester Chimbo, 2020. "Information and Communication Technology and Electricity Consumption in Transitional Economies," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 296-302.
    30. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    31. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    32. Poumanyvong, Phetkeo & Kaneko, Shinji, 2010. "Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis," Ecological Economics, Elsevier, vol. 70(2), pages 434-444, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Chien-Chiang & He, Zhi-Wen & Xiao, Fu, 2022. "How does information and communication technology affect renewable energy technology innovation? International evidence," Renewable Energy, Elsevier, vol. 200(C), pages 546-557.
    2. Fambeu, Ariel Herbert & Yomi, Patricia Tchawa, 2024. "Do ICTs promote the renewable energy consumption? The moderating effects of economic growth and structural transformation in Africa," International Economics, Elsevier, vol. 180(C).
    3. Dehghan Shabani, Zahra & Shahnazi, Rouhollah, 2019. "Energy consumption, carbon dioxide emissions, information and communications technology, and gross domestic product in Iranian economic sectors: A panel causality analysis," Energy, Elsevier, vol. 169(C), pages 1064-1078.
    4. Horvey, Sylvester Senyo & Odei-Mensah, Jones & Moloi, Tankiso & Bokpin, Godfred A., 2024. "Digital economy, financial development and energy transition in Africa: Exploring for synergies and nonlinearities," Applied Energy, Elsevier, vol. 376(PB).
    5. Taneja, Shivani & Mandys, Filip, 2022. "The effect of disaggregated information and communication technologies on industrial energy demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    6. Wang, Ying & Wang, Yong & Shahbaz, Muhammad, 2023. "How does digital economy affect energy poverty? Analysis from the global perspective," Energy, Elsevier, vol. 282(C).
    7. Patrick Schulte & Heinz Welsch & Sascha Rexhäuser, 2016. "ICT and the Demand for Energy: Evidence from OECD Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(1), pages 119-146, January.
    8. Yi, Jiahui & Dai, Sheng & Li, Lin & Cheng, Jinhua, 2024. "How does digital economy development affect renewable energy innovation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    9. Ma, Dan & Tang, Jiaqi & Jiang, Xuemei, 2023. "Effects of digital global value chain participation on CO2 emissions embodied in digital exports: New evidence from PSTR approach," Energy Economics, Elsevier, vol. 126(C).
    10. Kopp, Thomas & Nabernegg, Markus & Lange, Steffen, 2023. "The net climate effect of digitalization, differentiating between firms and households," Energy Economics, Elsevier, vol. 126(C).
    11. Tang, Chang & Xue, Yan & Wu, Haitao & Irfan, Muhammad & Hao, Yu, 2022. "How does telecommunications infrastructure affect eco-efficiency? Evidence from a quasi-natural experiment in China," Technology in Society, Elsevier, vol. 69(C).
    12. Kouton, Jeffrey, 2019. "Information Communication Technology development and energy demand in African countries," Energy, Elsevier, vol. 189(C).
    13. Zheming Yan & Rui Shi & Zhiming Yang, 2018. "ICT Development and Sustainable Energy Consumption: A Perspective of Energy Productivity," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    14. Xue, Yan & Tang, Chang & Wu, Haitao & Liu, Jianmin & Hao, Yu, 2022. "The emerging driving force of energy consumption in China: Does digital economy development matter?," Energy Policy, Elsevier, vol. 165(C).
    15. Lin, Boqiang & Huang, Chenchen, 2023. "Nonlinear relationship between digitization and energy efficiency: Evidence from transnational panel data," Energy, Elsevier, vol. 276(C).
    16. Gao, Da & Li, Ge & Yu, Jiyu, 2022. "Does digitization improve green total factor energy efficiency? Evidence from Chinese 213 cities," Energy, Elsevier, vol. 247(C).
    17. Wenfei Song & Xianfeng Han, 2024. "Does the digital economy contribute to China’s energy transition?," Economic Change and Restructuring, Springer, vol. 57(5), pages 1-25, October.
    18. Ma, Jinjin & Yang, Lin & Wang, Donghan & Li, Yiming & Xie, Zuomiao & Lv, Haodong & Woo, Donghyup, 2024. "Digitalization in response to carbon neutrality: Mechanisms, effects and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    19. Theile, Philipp & Farag, Markos & Kopp, Thomas, 2022. "Does information substitute or complement energy? - A mediation analysis of their relationship in European economies," VfS Annual Conference 2022 (Basel): Big Data in Economics 264123, Verein für Socialpolitik / German Economic Association.
    20. Lee, Chien-Chiang & Tang, Manting & Lee, Chi-Chuan, 2023. "Reaping digital dividends: Digital inclusive finance and high-quality development of enterprises in China," Telecommunications Policy, Elsevier, vol. 47(2).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • O11 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Macroeconomic Analyses of Economic Development
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jknowl:v:16:y:2025:i:2:d:10.1007_s13132-024-02232-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.