IDEAS home Printed from
   My bibliography  Save this article

Using association rules to assess purchase probability in online stores


  • Grażyna Suchacka

    () (Opole University)

  • Grzegorz Chodak

    (Wrocław University of Technology)


The paper addresses the problem of e-customer behavior characterization based on Web server log data. We describe user sessions with the number of session features and aim to identify the features indicating a high probability of making a purchase for two customer groups: traditional customers and innovative customers. We discuss our approach aimed at assessing a purchase probability in a user session depending on categories of viewed products and session features. We apply association rule mining to real online bookstore data. The results show differences in factors indicating a high purchase probability in session for both customer types. The discovered association rules allow us to formulate some predictions for the online store, e.g. that a logged user who has viewed only traditional, printed books, has been staying in the store from 10 to 25 min, and has opened between 30 and 75 pages, will decide to confirm a purchase with the probability of more than 92 %.

Suggested Citation

  • Grażyna Suchacka & Grzegorz Chodak, 2017. "Using association rules to assess purchase probability in online stores," Information Systems and e-Business Management, Springer, vol. 15(3), pages 751-780, August.
  • Handle: RePEc:spr:infsem:v:15:y:2017:i:3:d:10.1007_s10257-016-0329-4
    DOI: 10.1007/s10257-016-0329-4

    Download full text from publisher

    File URL:
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Van den Poel, Dirk & Buckinx, Wouter, 2005. "Predicting online-purchasing behaviour," European Journal of Operational Research, Elsevier, vol. 166(2), pages 557-575, October.
    2. Chodak, Grzegorz & Suchacka, Grażyna, 2013. "Practical Aspects of Log File Analysis for E-Commerce," MPRA Paper 48131, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Guo, Xin & Wang, David Z.W. & Wu, Jianjun & Sun, Huijun & Zhou, Li, 2020. "Mining commuting behavior of urban rail transit network by using association rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    2. Yongyoon Suh & Yongtae Park, 2018. "Identifying and structuring service functions of mobile applications in Google’s Android Market," Information Systems and e-Business Management, Springer, vol. 16(2), pages 383-406, May.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infsem:v:15:y:2017:i:3:d:10.1007_s10257-016-0329-4. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.