IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v559y2020ics0378437120305732.html
   My bibliography  Save this article

Mining commuting behavior of urban rail transit network by using association rules

Author

Listed:
  • Guo, Xin
  • Wang, David Z.W.
  • Wu, Jianjun
  • Sun, Huijun
  • Zhou, Li

Abstract

Automated Fare Collection (AFC) systems in rail transit services collect enormous amounts of detailed data on on-board transactions. A better understanding of travelers’ commuting and transfer behavior based on those massive volumes of AFC data would enable the rail service operators to evaluate their service quality and optimize operation strategies. This paper proposes an efficient and effective data mining procedure to figure out the association rules, aiming to extract connectivity and correlation of passenger flow among different services lines in urban rail transit networks. A case study based on the Beijing Subway network is conducted to demonstrate the applicability of the proposed method. Using up to 28 million AFC smart card transaction data, we match and analyze travelers’ trip chains to investigate the commuting trip patterns in terms of spatio-temporal distribution characteristics. An innovational non-nigh-to-five commuting behavior and traditional nine-to-five commuting behavior are divided by the obtained associated rules to ensure a more nuanced description of commuting behaviors. Further, the results indicated by stronger association rules (2-frequent itemset and 3-frequent itemset) also provide a better understanding of transfer behaviors, like the frequent transfers among different service lines, and potentially vulnerable stations in the network. The research outcomes can be used to assist rail transit service operators in developing optimal operation strategies like timetabling design to enhance the transfer performance between different rail lines.

Suggested Citation

  • Guo, Xin & Wang, David Z.W. & Wu, Jianjun & Sun, Huijun & Zhou, Li, 2020. "Mining commuting behavior of urban rail transit network by using association rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
  • Handle: RePEc:eee:phsmap:v:559:y:2020:i:c:s0378437120305732
    DOI: 10.1016/j.physa.2020.125094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120305732
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Varol Altay, Elif & Alatas, Bilal, 2020. "Intelligent optimization algorithms for the problem of mining numerical association rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    2. McNicholas, P.D. & Murphy, T.B. & O'Regan, M., 2008. "Standardising the lift of an association rule," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4712-4721, June.
    3. Wu, Jianjun & Qu, Yunchao & Sun, Huijun & Yin, Haodong & Yan, Xiaoyong & Zhao, Jiandong, 2019. "Data-driven model for passenger route choice in urban metro network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 787-798.
    4. Zhang, Jianhua & Xu, Xiaoming & Hong, Liu & Wang, Shuliang & Fei, Qi, 2011. "Networked analysis of the Shanghai subway network, in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4562-4570.
    5. Lu, Qing-Chang, 2018. "Modeling network resilience of rail transit under operational incidents," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 227-237.
    6. Ma, Xiaolei & Liu, Congcong & Wen, Huimin & Wang, Yunpeng & Wu, Yao-Jan, 2017. "Understanding commuting patterns using transit smart card data," Journal of Transport Geography, Elsevier, vol. 58(C), pages 135-145.
    7. Zhou, Jin & Xu, Weixiang & Guo, Xin & Ding, Jing, 2015. "A method for modeling and analysis of directed weighted accident causation network (DWACN)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 263-277.
    8. Shafahi, Yousef & Khani, Alireza, 2010. "A practical model for transfer optimization in a transit network: Model formulations and solutions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(6), pages 377-389, July.
    9. Grażyna Suchacka & Grzegorz Chodak, 2017. "Using association rules to assess purchase probability in online stores," Information Systems and e-Business Management, Springer, vol. 15(3), pages 751-780, August.
    10. Ceder, A. & Golany, B. & Tal, O., 2001. "Creating bus timetables with maximal synchronization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(10), pages 913-928, December.
    11. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    12. Guo, Xin & Sun, Huijun & Wu, Jianjun & Jin, Jiangang & Zhou, Jin & Gao, Ziyou, 2017. "Multiperiod-based timetable optimization for metro transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 46-67.
    13. Zhang, Jianhua & Zhao, Mingwei & Liu, Haikuan & Xu, Xiaoming, 2013. "Networked characteristics of the urban rail transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1538-1546.
    14. Yang, Xin & Chen, Anthony & Ning, Bin & Tang, Tao, 2017. "Bi-objective programming approach for solving the metro timetable optimization problem with dwell time uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 22-37.
    15. Li, Zhibin & Wang, Wei & Yang, Chen & Ragland, David R., 2013. "Bicycle commuting market analysis using attitudinal market segmentation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 47(C), pages 56-68.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Hongtai & Ping, An & Wei, Hongmin & Zhai, Guocong, 2023. "Unique in the metro system: The likelihood to re-identify a metro user with limited trajectory points," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    2. Jin, Kun & Wang, Wei & Li, Xinran & Chen, Siyuan & Qin, Shaoyang & Hua, Xuedong, 2023. "Cascading failure in urban rail transit network considering demand variation and time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    3. Yuxin Huang & Jingdao Fan & Zhenguo Yan & Shugang Li & Yanping Wang, 2021. "Research on Early Warning for Gas Risks at a Working Face Based on Association Rule Mining," Energies, MDPI, vol. 14(21), pages 1-19, October.
    4. Hui Zhang & Yu Cui & Jianmin Jia, 2024. "Mining Multimodal Travel Mobilities with Big Ridership Data: Comparative Analysis of Subways and Taxis," Sustainability, MDPI, vol. 16(10), pages 1-17, May.
    5. Lu, Qing-Chang & Li, Jing & Xu, Peng-Cheng & Zhang, Lei & Cui, Xin, 2024. "Modeling cascading failures of urban rail transit network based on passenger spatiotemporal heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    6. Huang, Kang & Wu, Jianjun & Sun, Huijun & Yang, Xin & Gao, Ziyou & Feng, Xujie, 2022. "Timetable synchronization optimization in a subway–bus network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    7. Shi, Linchang & Yang, Jiayu & Lee, Jaeyoung Jay & Bai, Jun & Ryu, Ingon & Choi, Keechoo, 2024. "Spatial-temporal identification of commuters using trip chain data from non-motorized mode incentive program and public transportation," Journal of Transport Geography, Elsevier, vol. 117(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    2. Guo, Xin & Wu, Jianjun & Sun, Huijun & Yang, Xin & Jin, Jian Gang & Wang, David Z.W., 2020. "Scheduling synchronization in urban rail transit networks: Trade-offs between transfer passenger and last train operation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 463-490.
    3. Yin, Jiateng & Wang, Miao & D’Ariano, Andrea & Zhang, Jinlei & Yang, Lixing, 2023. "Synchronization of train timetables in an urban rail network: A bi-objective optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    4. Zhang, Jianhua & Wang, Shuliang & Wang, Xiaoyuan, 2018. "Comparison analysis on vulnerability of metro networks based on complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 72-78.
    5. Zhang, Jianhua & Wang, Shuliang & Zhang, Zhaojun & Zou, Kuansheng & Shu, Zhan, 2016. "Characteristics on hub networks of urban rail transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 502-507.
    6. Chu, James C. & Korsesthakarn, Kanticha & Hsu, Yu-Ting & Wu, Hua-Yen, 2019. "Models and a solution algorithm for planning transfer synchronization of bus timetables," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 247-266.
    7. Abdolmaleki, Mojtaba & Masoud, Neda & Yin, Yafeng, 2020. "Transit timetable synchronization for transfer time minimization," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 143-159.
    8. Noguchi, Hiroki & Fuse, Masaaki, 2020. "Rethinking critical node problem for railway networks from the perspective of turn-back operation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    9. Canca, David & Barrena, Eva, 2018. "The integrated rolling stock circulation and depot location problem in railway rapid transit systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 115-138.
    10. Xuelei Meng & Yahui Wang & Limin Jia & Lei Li, 2020. "Reliability Optimization of a Railway Network," Sustainability, MDPI, vol. 12(23), pages 1-27, November.
    11. Daniel (Jian) Sun & Yuhan Zhao & Qing-Chang Lu, 2015. "Vulnerability Analysis of Urban Rail Transit Networks: A Case Study of Shanghai, China," Sustainability, MDPI, vol. 7(6), pages 1-18, May.
    12. Gkiotsalitis, K. & Cats, O. & Liu, T. & Bult, J.M., 2023. "An exact optimization method for coordinating the arrival times of urban rail lines at a common corridor," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 178(C).
    13. Yi Junmin, 2014. "System Planning of Route Diagram for China Railway Passengers Based on Network and Ergonomics," Journal of Systems Science and Information, De Gruyter, vol. 2(2), pages 170-177, April.
    14. Gkiotsalitis, K. & Alesiani, F., 2019. "Robust timetable optimization for bus lines subject to resource and regulatory constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 30-51.
    15. Yu, Chao & Li, Haiying & Xu, Xinyue & Liu, Jun, 2020. "Data-driven approach for solving the route choice problem with traveling backward behavior in congested metro systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    16. Lu, Qing-Chang & Zhang, Lei & Xu, Peng-Cheng & Cui, Xin & Li, Jing, 2022. "Modeling network vulnerability of urban rail transit under cascading failures: A Coupled Map Lattices approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    17. Chen, Junlan & Pu, Ziyuan & Guo, Xiucheng & Cao, Jieyu & Zhang, Fang, 2023. "Multiperiod metro timetable optimization based on the complex network and dynamic travel demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    18. Yingying Xing & Jian Lu & Shendi Chen, 2016. "Weighted Complex Network Analysis of Shanghai Rail Transit System," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-8, August.
    19. Yin, Dezhi & Huang, Wencheng & Shuai, Bin & Liu, Hongyi & Zhang, Yue, 2022. "Structural characteristics analysis and cascading failure impact analysis of urban rail transit network: From the perspective of multi-layer network," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    20. Zhang, Yanjie & Ayyub, Bilal M. & Saadat, Yalda & Zhang, Dongming & Huang, Hongwei, 2020. "A double-weighted vulnerability assessment model for metrorail transit networks and its application in Shanghai metro," International Journal of Critical Infrastructure Protection, Elsevier, vol. 29(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:559:y:2020:i:c:s0378437120305732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.