IDEAS home Printed from https://ideas.repec.org/a/spr/fininn/v10y2024i1d10.1186_s40854-024-00625-3.html
   My bibliography  Save this article

Examining user behavior with machine learning for effective mobile peer-to-peer payment adoption

Author

Listed:
  • Blanco-Oliver Antonio

    (University of Seville, Seville)

  • Lara-Rubio Juan

    (University of Granada)

  • Irimia-Diéguez Ana

    (University of Seville, Seville)

  • Liébana-Cabanillas Francisco

    (University of Granada)

Abstract

Disruptive innovations caused by FinTech (i.e., technology-assisted customized financial services) have brought digital peer-to-peer (P2P) payments to the fore. In this challenging environment and based on theories about customer behavior in response to technological innovations, this paper identifies the drivers of consumer adoption of mobile P2P payments and develops a machine learning model to predict the use of this thriving payment option. To do so, we use a unique data set with information from 701 participants (observations) who completed a questionnaire about the adoption of Bizum, a leading mobile P2P platform worldwide. The respondent profile was the average Spanish citizen within the framework of European culture and lifestyle. We document (in this order of priority) the usefulness of mobile P2P payments, influence of peers and other social groups such as friends, family, and colleagues on individual behavior (that is, subjective norms), perceived trust, and enjoyment of the user experience within the digital context and how those attributes better classify (potential) users of mobile P2P payments. We also find that nonparametric approaches based on machine learning algorithms outperform traditional parametric methods. Finally, our results show that feature selection based on random forest, such as the Boruta procedure, as a preprocessing technique substantially increases prediction performance while reducing noise, redundancy of the resulting model, and computational costs. The main limitation of this research is that it only has a place within the sociocultural and institutional framework of the Spanish population. It is therefore desirable to replicate this study by surveying people from other countries to analyze the effects of the institutional environment on the adoption of mobile P2P payments.

Suggested Citation

  • Blanco-Oliver Antonio & Lara-Rubio Juan & Irimia-Diéguez Ana & Liébana-Cabanillas Francisco, 2024. "Examining user behavior with machine learning for effective mobile peer-to-peer payment adoption," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-30, December.
  • Handle: RePEc:spr:fininn:v:10:y:2024:i:1:d:10.1186_s40854-024-00625-3
    DOI: 10.1186/s40854-024-00625-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40854-024-00625-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40854-024-00625-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Francisco Liébana-Cabanillas & Nidhi Singh & Zoran Kalinic & Elena Carvajal-Trujillo, 2021. "Examining the determinants of continuance intention to use and the moderating effect of the gender and age of users of NFC mobile payments: a multi-analytical approach," Information Technology and Management, Springer, vol. 22(2), pages 133-161, June.
    2. Ritu Agarwal & Jayesh Prasad, 1998. "A Conceptual and Operational Definition of Personal Innovativeness in the Domain of Information Technology," Information Systems Research, INFORMS, vol. 9(2), pages 204-215, June.
    3. Thakor, Anjan, 2020. "Corrigendum to: Fintech and Banking: What Do We Know?," Journal of Financial Intermediation, Elsevier, vol. 43(C).
    4. Iviane Ramos-de-Luna & Francisco Montoro-Ríos & Francisco Liébana-Cabanillas, 2016. "Determinants of the intention to use NFC technology as a payment system: an acceptance model approach," Information Systems and e-Business Management, Springer, vol. 14(2), pages 293-314, May.
    5. Hernández-Murillo, Rubén & Llobet, Gerard & Fuentes, Roberto, 2010. "Strategic online banking adoption," Journal of Banking & Finance, Elsevier, vol. 34(7), pages 1650-1663, July.
    6. Peter Gomber & Jascha-Alexander Koch & Michael Siering, 2017. "Digital Finance and FinTech: current research and future research directions," Journal of Business Economics, Springer, vol. 87(5), pages 537-580, July.
    7. Tianlang Xiong & Zhishuo Ma & Zhuangzhuang Li & Jiangqianyi Dai, 2022. "The analysis of influence mechanism for internet financial fraud identification and user behavior based on machine learning approaches," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 996-1007, December.
    8. Fred D. Davis & Richard P. Bagozzi & Paul R. Warshaw, 1989. "User Acceptance of Computer Technology: A Comparison of Two Theoretical Models," Management Science, INFORMS, vol. 35(8), pages 982-1003, August.
    9. W. Scott Frame & Larry D. Wall & Lawrence J. White, 2018. "Technological Change and Financial Innovation in Banking: Some Implications for Fintech," FRB Atlanta Working Paper 2018-11, Federal Reserve Bank of Atlanta.
    10. Thakor, Anjan V., 2020. "Fintech and banking: What do we know?," Journal of Financial Intermediation, Elsevier, vol. 41(C).
    11. Sheth, Jagdish & Kellstadt, Charles H., 2021. "Next frontiers of research in data driven marketing: Will techniques keep up with data tsunami?," Journal of Business Research, Elsevier, vol. 125(C), pages 780-784.
    12. Krishna Moorthy & Loh Chun T'ing & Kwong Chea Yee & Ang Wen Huey & Lee Joe In & Poon Chyi Feng & Tan Jia Yi, 2020. "What drives the adoption of mobile payment? A Malaysian perspective," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 25(3), pages 349-364, July.
    13. Francisco Liébana-Cabanillas & Iviane Ramos de Luna & Francisco Montoro-Ríos, 2017. "Intention to use new mobile payment systems: a comparative analysis of SMS and NFC payments," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 30(1), pages 892-910, January.
    14. Gang Kou & Özlem Olgu Akdeniz & Hasan Dinçer & Serhat Yüksel, 2021. "Fintech investments in European banks: a hybrid IT2 fuzzy multidimensional decision-making approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-28, December.
    15. Petropoulos, Anastasios & Siakoulis, Vasilis & Stavroulakis, Evangelos & Vlachogiannakis, Nikolaos E., 2020. "Predicting bank insolvencies using machine learning techniques," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1092-1113.
    16. Kalinic, Zoran & Marinkovic, Veljko & Molinillo, Sebastián & Liébana-Cabanillas, Francisco, 2019. "A multi-analytical approach to peer-to-peer mobile payment acceptance prediction," Journal of Retailing and Consumer Services, Elsevier, vol. 49(C), pages 143-153.
    17. A. Irimia-Diéguez & F. Velicia-Martín & M. Aguayo-Camacho, 2023. "Predicting Fintech Innovation Adoption: the Mediator Role of Social Norms and Attitudes," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
    18. Giacomo Migliore & Ralf Wagner & Felipe Schneider Cechella & Francisco Liébana-Cabanillas, 2022. "Antecedents to the Adoption of Mobile Payment in China and Italy: an Integration of UTAUT2 and Innovation Resistance Theory," Information Systems Frontiers, Springer, vol. 24(6), pages 2099-2122, December.
    19. Higueras-Castillo, Elena & Liébana-Cabanillas, Francisco J. & Villarejo-Ramos, Ángel F., 2023. "Intention to use e-commerce vs physical shopping. Difference between consumers in the post-COVID era," Journal of Business Research, Elsevier, vol. 157(C).
    20. Abdullah & Mohammed Naved Khan, 2021. "Determining mobile payment adoption: A systematic literature search and bibliometric analysis," Cogent Business & Management, Taylor & Francis Journals, vol. 8(1), pages 1893245-189, January.
    21. Patrick Bajari & Denis Nekipelov & Stephen P. Ryan & Miaoyu Yang, 2015. "Machine Learning Methods for Demand Estimation," American Economic Review, American Economic Association, vol. 105(5), pages 481-485, May.
    22. Jireh Yi-Le Chan & Steven Mun Hong Leow & Khean Thye Bea & Wai Khuen Cheng & Seuk Wai Phoong & Zeng-Wei Hong & Yen-Lin Chen, 2022. "Mitigating the Multicollinearity Problem and Its Machine Learning Approach: A Review," Mathematics, MDPI, vol. 10(8), pages 1-17, April.
    23. Ma, Shaohui & Fildes, Robert, 2020. "Forecasting third-party mobile payments with implications for customer flow prediction," International Journal of Forecasting, Elsevier, vol. 36(3), pages 739-760.
    24. Andrés Alonso Robisco & José Manuel Carbó Martínez, 2022. "Measuring the model risk-adjusted performance of machine learning algorithms in credit default prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-35, December.
    25. Paolo Vanini & Sebastiano Rossi & Ermin Zvizdic & Thomas Domenig, 2023. "Online payment fraud: from anomaly detection to risk management," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-25, December.
    26. Guo, Mengzhuo & Zhang, Qingpeng & Liao, Xiuwu & Chen, Frank Youhua & Zeng, Daniel Dajun, 2021. "A hybrid machine learning framework for analyzing human decision-making through learning preferences," Omega, Elsevier, vol. 101(C).
    27. Viswanath Venkatesh & Fred D. Davis, 2000. "A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies," Management Science, INFORMS, vol. 46(2), pages 186-204, February.
    28. Shirley Taylor & Peter A. Todd, 1995. "Understanding Information Technology Usage: A Test of Competing Models," Information Systems Research, INFORMS, vol. 6(2), pages 144-176, June.
    29. Thomas Davenport & Abhijit Guha & Dhruv Grewal & Timna Bressgott, 2020. "How artificial intelligence will change the future of marketing," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 24-42, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Kudelić & Tamara Šmaguc & Sherry Robinson, 2025. "Artificial intelligence in the service of entrepreneurial finance: knowledge structure and the foundational algorithmic paradigm," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-43, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco Liébana-Cabanillas & Francisco Muñoz-Leiva & Sebastián Molinillo & Elena Higueras-Castillo, 2022. "Do biometric payment systems work during the COVID-19 pandemic? Insights from the Spanish users' viewpoint," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
    2. Nistor, Cristian, 2013. "A conceptual model for the use of social media in companies," MPRA Paper 44224, University Library of Munich, Germany.
    3. Eung-Suk Park & ByungYong Hwang & Kyungwan Ko & Daecheol Kim, 2017. "Consumer Acceptance Analysis of the Home Energy Management System," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
    4. Iviane Ramos-de-Luna & Francisco Montoro-Ríos & Francisco Liébana-Cabanillas, 2016. "Determinants of the intention to use NFC technology as a payment system: an acceptance model approach," Information Systems and e-Business Management, Springer, vol. 14(2), pages 293-314, May.
    5. Christopher R. Plouffe & John S. Hulland & Mark Vandenbosch, 2001. "Research Report: Richness Versus Parsimony in Modeling Technology Adoption Decisions—Understanding Merchant Adoption of a Smart Card-Based Payment System," Information Systems Research, INFORMS, vol. 12(2), pages 208-222, June.
    6. Tianyang Huang & Gang Wang & Chiwu Huang, 2024. "What promotes the mobile payment behavior of the elderly?," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
    7. repec:dau:papers:123456789/13613 is not listed on IDEAS
    8. Ioanna Roussou & Emmanouil Stiakakis & Angelo Sifaleras, 2019. "An empirical study on the commercial adoption of digital currencies," Information Systems and e-Business Management, Springer, vol. 17(2), pages 223-259, December.
    9. Poolad Daneshvar & H. N. Ramesh, 2012. "Creating Competitive Advantage through Employee’s Attitude towards It Intervention -A Case Study of Indian Public Banks," Indian Journal of Commerce and Management Studies, Educational Research Multimedia & Publications,India, vol. 3(1), pages 17-24, January.
    10. Nastjuk, Ilja & Herrenkind, Bernd & Marrone, Mauricio & Brendel, Alfred Benedikt & Kolbe, Lutz M., 2020. "What drives the acceptance of autonomous driving? An investigation of acceptance factors from an end-user's perspective," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    11. Kalinic, Zoran & Marinkovic, Veljko & Molinillo, Sebastián & Liébana-Cabanillas, Francisco, 2019. "A multi-analytical approach to peer-to-peer mobile payment acceptance prediction," Journal of Retailing and Consumer Services, Elsevier, vol. 49(C), pages 143-153.
    12. Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
    13. Francisco Rejón-Guardia & Juán Sánchez-Fernández & Francisco Muñoz-Leiva, 2011. "Motivational Factors that influence the Acceptance of Microblogging Social Networks: The µBAM Model," FEG Working Paper Series 06/11, Faculty of Economics and Business (University of Granada).
    14. Zarco, Carmen & Giráldez-Cru, Jesús & Cordón, Oscar & Liébana-Cabanillas, Francisco, 2024. "A comprehensive view of biometric payment in retailing: A complete study from user to expert," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
    15. de Luna, Iviane Ramos & Liébana-Cabanillas, Francisco & Sánchez-Fernández, Juan & Muñoz-Leiva, Francisco, 2019. "Mobile payment is not all the same: The adoption of mobile payment systems depending on the technology applied," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 931-944.
    16. Minu Gupta & Ravi Kiran, 2024. "Sectoral Comparison of Sustainable Digital Financial Inclusion of Women Workforce with the Mediation of Digital Banking Adoption Intention: An Empirical Analysis," SAGE Open, , vol. 14(2), pages 21582440241, June.
    17. Rajak, Manindra & Shaw, Krishnendu, 2021. "An extension of technology acceptance model for mHealth user adoption," Technology in Society, Elsevier, vol. 67(C).
    18. Kulviwat, Songpol & Bruner II, Gordon C. & Al-Shuridah, Obaid, 2009. "The role of social influence on adoption of high tech innovations: The moderating effect of public/private consumption," Journal of Business Research, Elsevier, vol. 62(7), pages 706-712, July.
    19. Zhunzhun Liu & Shenglin Ben & Ruidong Zhang, 2019. "Factors affecting consumers’ mobile payment behavior: a meta-analysis," Electronic Commerce Research, Springer, vol. 19(3), pages 575-601, September.
    20. Luiz Antonio Joia & Rodrigo Proença, 2022. "The social representation of fintech from the perspective of traditional financial sector professionals: evidence from Brazil," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-27, December.
    21. George Cristian Nistor, 2019. "An Extended Technology Acceptance Model For Marketing Strategies In Social Media," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 23, pages 127-136, June.

    More about this item

    Keywords

    Boruta; Feature selection; Mobile; P2P; Payment; Random forest;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation
    • F65 - International Economics - - Economic Impacts of Globalization - - - Finance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:10:y:2024:i:1:d:10.1186_s40854-024-00625-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.