IDEAS home Printed from https://ideas.repec.org/a/spr/eurasi/v8y2018i3d10.1007_s40821-017-0084-6.html
   My bibliography  Save this article

Environmental regulation and eco-innovation: the Porter hypothesis refined

Author

Listed:
  • Abdelfeteh Bitat

    (Université Saint-Louis Bruxelles)

Abstract

The paper analyses the relationship between environmental regulation and eco-innovation. The relationship is tested using a German firm-based panel and a dynamic count data model estimating the propensity of firms to innovate in response to five initiating factors, namely the fulfillment of existing legal requirements, expectations towards future legal requirements, financial incentives, demand for eco-innovations and self-commitment. The heterogeneity of firms is controlled for using R&D intensity, the size, the sector and the region of the company. The results answer the central question concerning the design of environmental policies in order to foster eco-innovation. Comparing a static model to a dynamic one shows that only long term objectives and market incentives are positively associated with eco-innovation. Conventional regulatory tools, namely legally binding instruments, are not effective for triggering innovative behavior at the firm level. The results do not allow to confirm the Porter hypothesis but rather offer a refined version, emphasizing the nuances that apply to the concept of “regulation”. The claim is that what matters is not the type of the policy instrument but rather the perception of the instrument by firms.

Suggested Citation

  • Abdelfeteh Bitat, 2018. "Environmental regulation and eco-innovation: the Porter hypothesis refined," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 8(3), pages 299-321, September.
  • Handle: RePEc:spr:eurasi:v:8:y:2018:i:3:d:10.1007_s40821-017-0084-6
    DOI: 10.1007/s40821-017-0084-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40821-017-0084-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40821-017-0084-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rabe-Hesketh, Sophia & Skrondal, Anders, 2013. "Avoiding biased versions of Wooldridge’s simple solution to the initial conditions problem," Economics Letters, Elsevier, vol. 120(2), pages 346-349.
    2. Paul Lanoie & Michel Patry & Richard Lajeunesse, 2008. "Environmental regulation and productivity: testing the porter hypothesis," Journal of Productivity Analysis, Springer, vol. 30(2), pages 121-128, October.
    3. Roberto Fontana & Marco Guerzoni, 2008. "Incentives and uncertainty: an empirical analysis of the impact of demand on innovation," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 32(6), pages 927-946, November.
    4. Jeffrey M. Wooldridge, 2005. "Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 39-54, January.
    5. Bernhard Truffer & Lars Coenen, 2012. "Environmental Innovation and Sustainability Transitions in Regional Studies," Regional Studies, Taylor & Francis Journals, vol. 46(1), pages 1-21, November.
    6. Charles Bérubé & Pierre Mohnen, 2009. "Are firms that receive R&D subsidies more innovative?," Canadian Journal of Economics, Canadian Economics Association, vol. 42(1), pages 206-225, February.
    7. Horbach, Jens & Rammer, Christian & Rennings, Klaus, 2012. "Determinants of eco-innovations by type of environmental impact — The role of regulatory push/pull, technology push and market pull," Ecological Economics, Elsevier, vol. 78(C), pages 112-122.
    8. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    9. Reinhard Hujer & Dubravko Radić, 2005. "Evaluating The Impacts Of Subsidies On Innovation Activities In Germany," Scottish Journal of Political Economy, Scottish Economic Society, vol. 52(4), pages 565-586, September.
    10. Rennings, Klaus, 2000. "Redefining innovation -- eco-innovation research and the contribution from ecological economics," Ecological Economics, Elsevier, vol. 32(2), pages 319-332, February.
    11. Bauermann, Klaas, 2016. "German Energiewende and the heating market – Impact and limits of policy," Energy Policy, Elsevier, vol. 94(C), pages 235-246.
    12. Adam B. Jaffe & Karen Palmer, 1997. "Environmental Regulation And Innovation: A Panel Data Study," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 610-619, November.
    13. Marcus Wagner & Patrick Llerena, 2011. "Eco-Innovation Through Integration, Regulation and Cooperation: Comparative Insights from Case Studies in Three Manufacturing Sectors," Industry and Innovation, Taylor & Francis Journals, vol. 18(8), pages 747-764, November.
    14. Giada Di Stefano & Alfonso Gambardella & Gianmario Verona, 2012. "Technology Push and Demand Pull Perspectives in Innovation Studies: Current Findings and Future Research Directions," Post-Print hal-00696607, HAL.
    15. Enrique Moral-Benito, 2013. "Likelihood-Based Estimation of Dynamic Panels With Predetermined Regressors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(4), pages 451-472, October.
    16. Wiji Arulampalam & Mark B. Stewart, 2009. "Simplified Implementation of the Heckman Estimator of the Dynamic Probit Model and a Comparison with Alternative Estimators," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(5), pages 659-681, October.
    17. Manuel Frondel & Jens Horbach & Klaus Rennings, 2007. "End‐of‐pipe or cleaner production? An empirical comparison of environmental innovation decisions across OECD countries," Business Strategy and the Environment, Wiley Blackwell, vol. 16(8), pages 571-584, December.
    18. Alessandra Catozzella & Marco Vivarelli, 2016. "The possible adverse impact of innovation subsidies: some evidence from Italy," International Entrepreneurship and Management Journal, Springer, vol. 12(2), pages 351-368, June.
    19. Krysiak, Frank C., 2011. "Environmental regulation, technological diversity, and the dynamics of technological change," Journal of Economic Dynamics and Control, Elsevier, vol. 35(4), pages 528-544, April.
    20. Jaffe Adam B. & Stavins Robert N., 1995. "Dynamic Incentives of Environmental Regulations: The Effects of Alternative Policy Instruments on Technology Diffusion," Journal of Environmental Economics and Management, Elsevier, vol. 29(3), pages 43-63, November.
    21. Sascha Rexhäuser & Christian Rammer, 2014. "Environmental Innovations and Firm Profitability: Unmasking the Porter Hypothesis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(1), pages 145-167, January.
    22. Beise, Marian & Rennings, Klaus, 2005. "Lead markets and regulation: a framework for analyzing the international diffusion of environmental innovations," Ecological Economics, Elsevier, vol. 52(1), pages 5-17, January.
    23. Wagner, Marcus, 2010. "The role of corporate sustainability performance for economic performance: A firm-level analysis of moderation effects," Ecological Economics, Elsevier, vol. 69(7), pages 1553-1560, May.
    24. Kevin Guerin, 2003. "Encouraging Quality Regulation: Theories and Tools," Treasury Working Paper Series 03/24, New Zealand Treasury.
    25. Sappington, David E. M. & Pfeifenberger, Johannes P. & Hanser, Philip & Basheda, Gregory N., 2001. "The State of Performance-Based Regulation in the U.S. Electric Utility Industry," The Electricity Journal, Elsevier, vol. 14(8), pages 71-79, October.
    26. Abagail McWilliams & Donald Siegel, 2000. "Corporate social responsibility and financial performance: correlation or misspecification?," Strategic Management Journal, Wiley Blackwell, vol. 21(5), pages 603-609, May.
    27. Clausen, Tommy H., 2009. "Do subsidies have positive impacts on R&D and innovation activities at the firm level?," Structural Change and Economic Dynamics, Elsevier, vol. 20(4), pages 239-253, December.
    28. Hujer, Reinhard & Radić, Dubravko, 2005. "Evaluating the Impacts of Subsidies on Innovation Activities in Germany," ZEW Discussion Papers 05-43, ZEW - Leibniz Centre for European Economic Research.
    29. Di Stefano, Giada & Gambardella, Alfonso & Verona, Gianmario, 2012. "Technology push and demand pull perspectives in innovation studies: Current findings and future research directions," Research Policy, Elsevier, vol. 41(8), pages 1283-1295.
    30. Jushan Bai, 2013. "Fixed‐Effects Dynamic Panel Models, a Factor Analytical Method," Econometrica, Econometric Society, vol. 81(1), pages 285-314, January.
    31. Dosi, Giovanni, 1988. "Sources, Procedures, and Microeconomic Effects of Innovation," Journal of Economic Literature, American Economic Association, vol. 26(3), pages 1120-1171, September.
    32. Giovanni Dosi, 2000. "Sources, Procedures, and Microeconomic Effects of Innovation," Chapters, in: Innovation, Organization and Economic Dynamics, chapter 2, pages 63-114, Edward Elgar Publishing.
    33. Bettina Peters & Christian Rammer, 2013. "Innovation panel surveys in Germany," Chapters, in: Fred Gault (ed.), Handbook of Innovation Indicators and Measurement, chapter 6, pages 135-177, Edward Elgar Publishing.
    34. Schmookler, Jacob, 1962. "Economic Sources of Inventive Activity," The Journal of Economic History, Cambridge University Press, vol. 22(1), pages 1-20, March.
    35. Doran, Justin & Ryan, Geraldine, 2012. "Regulation and Firm Perception, Eco-Innovation and Firm Performance," MPRA Paper 44578, University Library of Munich, Germany.
    36. Costantini, Valeria & Crespi, Francesco & Martini, Chiara & Pennacchio, Luca, 2015. "Demand-pull and technology-push public support for eco-innovation: The case of the biofuels sector," Research Policy, Elsevier, vol. 44(3), pages 577-595.
    37. Kesidou, Effie & Demirel, Pelin, 2012. "On the drivers of eco-innovations: Empirical evidence from the UK," Research Policy, Elsevier, vol. 41(5), pages 862-870.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhuanlan Sun & Demi Zhu, 2023. "Investigating environmental regulation effects on technological innovation: A meta-regression analysis," Energy & Environment, , vol. 34(3), pages 463-492, May.
    2. Matteo Mazzarano, 2024. "Financial markets implications of the energy transition: carbon content of energy use in listed companies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-20, December.
    3. Gianni Guastella & Matteo Mazzarano & Stefano Pareglio & Riccardo Christopher Spani, 2022. "Do environmental and emission disclosure affect firms’ performance?," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 12(4), pages 695-718, December.
    4. Meng Liu & Yun Liu & Yongliang Zhao, 2021. "Environmental Compliance and Enterprise Innovation: Empirical Evidence from Chinese Manufacturing Enterprises," IJERPH, MDPI, vol. 18(4), pages 1-18, February.
    5. Antonella Biscione & Raul Caruso & Annunziata de Felice, 2021. "Environmental innovation in European transition countries," Applied Economics, Taylor & Francis Journals, vol. 53(5), pages 521-535, January.
    6. Xuesong Gu & Xiaoran An & Andong Liu, 2022. "Environmental Regulation, Corporate Economic Performance and Spatial Technology Spillover: Evidence from China’s Heavily Polluting Listed Corporations," IJERPH, MDPI, vol. 19(3), pages 1-24, January.
    7. Nidzara Osmanagic Bedenik & Nenad Zidak, 2019. "Green Economy Supported by Green Chemistry," Eurasian Journal of Business and Management, Eurasian Publications, vol. 7(2), pages 49-57.
    8. Chen, Yang & Cheng, Liang & Lee, Chien-Chiang & Wang, Chang-song, 2021. "The impact of regional banks on environmental pollution: Evidence from China's city commercial banks," Energy Economics, Elsevier, vol. 102(C).
    9. Hongshan Ai & Shenglan Hu & Ke Li & Shuai Shao, 2020. "Environmental regulation, total factor productivity, and enterprise duration: Evidence from China," Business Strategy and the Environment, Wiley Blackwell, vol. 29(6), pages 2284-2296, September.
    10. Shuai Shao & Zhigao Hu & Jianhua Cao & Lili Yang & Dabo Guan, 2020. "Environmental Regulation and Enterprise Innovation: A Review," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 1465-1478, March.
    11. Anan Wattanakuljarus, 2021. "Diverse effects of fossil fuel subsidy reform on industrial competitiveness in Thailand," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 489-517, September.
    12. Lu Zhang & Renyan Mu & Shuhua Hu & Quan Zhang & Song Wang, 2021. "Impacts of Manufacturing Specialized and Diversified Agglomeration on the Eco-Innovation Efficiency—A Nonlinear Test from Dynamic Perspective," Sustainability, MDPI, vol. 13(7), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pinget, Amandine, 2016. "Spécificités des déterminants des innovations environnementales : une approche appliquée aux PME [Specificities of determinants for environmental innovation : an approach applied to SMEs]," MPRA Paper 80108, University Library of Munich, Germany.
    2. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
    3. Gianluca ORSATTI, 2019. "Public R&D and green knowledge diffusion:\r\nEvidence from patent citation data," Cahiers du GREThA (2007-2019) 2019-17, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    4. Giovanni Ferri & Marco Pini, 2019. "Environmental vs. Social Responsibility in the Firm. Evidence from Italy," Sustainability, MDPI, vol. 11(16), pages 1-20, August.
    5. Alexandra Rese & Anke Kutschke & Daniel Baier, 2016. "Analyzing The Relative Influence Of Supply Side, Demand Side And Regulatory Factors On The Success Of Collaborative Energy Innovation Projects," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-43, February.
    6. Francesco Vona & Francesco Nicolli & Lionel Nesta, 2012. "Determinants of renewable energy innovation: environmental policies vs. market regulation," Sciences Po publications 2012-05, Sciences Po.
    7. Dawid, Herbert & Pellegrino, Gabriele & Vivarelli, Marco, 2017. "Demand and innovation: theory and evidence," GLO Discussion Paper Series 92, Global Labor Organization (GLO).
    8. Jana Hojnik, 2017. "In Pursuit of Eco-innovation," UPP Monograph Series, University of Primorska Press, number 978-961-7023-53-4.
    9. Rogge, Karoline S. & Schleich, Joachim, 2018. "Do policy mix characteristics matter for low-carbon innovation? A survey-based exploration of renewable power generation technologies in Germany," Research Policy, Elsevier, vol. 47(9), pages 1639-1654.
    10. Ghisetti, Claudia & Pontoni, Federico, 2015. "Investigating policy and R&D effects on environmental innovation: A meta-analysis," Ecological Economics, Elsevier, vol. 118(C), pages 57-66.
    11. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    12. Dawid, Herbert & Pellegrino, Gabriele & Vivarelli, Marco, 2017. "Is the demand-pull driver equally crucial for product vs process innovation?," MERIT Working Papers 2017-035, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    13. repec:hal:wpspec:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    14. Nicolò Barbieri & Claudia Ghisetti & Marianna Gilli & Giovanni Marin & Francesco Nicolli, 2016. "A Survey Of The Literature On Environmental Innovation Based On Main Path Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 596-623, July.
    15. Valeria Costantini & Francesco Crespi & Alessandro Palma, 2015. "Characterizing the policy mix and its impact on eco-innovation in energy-efficient technologies," SEEDS Working Papers 1115, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jun 2015.
    16. Herbert Dawid & Gabriele Pellegrino & Marco Vivarelli, 2021. "The role of demand in fostering product vs process innovation: a model and an empirical test," Journal of Evolutionary Economics, Springer, vol. 31(5), pages 1553-1572, November.
    17. repec:spo:wpecon:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    18. Amandine Pinget & Rachel Bocquet & Caroline Mothe, 2015. "Barriers to Environmental Innovation in SMEs: Empirical Evidence from French Firms," Post-Print hal-01300837, HAL.
    19. Durán-Romero, Gemma & López, Ana M. & Beliaeva, Tatiana & Ferasso, Marcos & Garonne, Christophe & Jones, Paul, 2020. "Bridging the gap between circular economy and climate change mitigation policies through eco-innovations and Quintuple Helix Model," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    20. José García-Quevedo & Gabriele Pellegrino & Maria Savona, 2017. "Reviving demand-pull perspectives: The effect of demand uncertainty and stagnancy on R&D strategy," Cambridge Journal of Economics, Oxford University Press, vol. 41(4), pages 1087-1122.
    21. Costa-Campi, M.T. & García-Quevedo, J. & Martínez-Ros, E., 2017. "What are the determinants of investment in environmental R&D?," Energy Policy, Elsevier, vol. 104(C), pages 455-465.
    22. Peiró-Signes, Ángel & Segarra-Oña, Marival & Trull-Domínguez, Óscar & Sánchez-Planelles, Joaquín, 2022. "Exposing the ideal combination of endogenous–exogenous drivers for companies’ ecoinnovative orientation: Results from machine-learning methods," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    23. Sanni, Maruf, 2018. "Drivers of eco-innovation in the manufacturing sector of Nigeria," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 303-314.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurasi:v:8:y:2018:i:3:d:10.1007_s40821-017-0084-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.