IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v65y2023i6d10.1007_s00181-023-02439-1.html
   My bibliography  Save this article

Green or grey stocks? Dynamic effects of carbon markets based on Chinese practices

Author

Listed:
  • Yingying Xu

    (Beihang University)

  • Xiang Li

    (University of Science and Technology Beijing)

Abstract

Carbon trading and new energy markets are two key mechanisms for carbon reduction. However, theoretical analysis cannot reveal the complex links between carbon, green, and grey markets. Therefore, this study resorts to the frequency spillover index to explore the overall and directional connectedness of carbon-energy systems in China. The spillover effect indicates the cross-market propagation of information shocks and the potential ripple effects of specific shocks on system-wide changes. Dynamic spillovers suggest that the role of a certain market is not unchanged. In the time domain, both the overall and directional spillovers are closely related with the trading of carbon allowances and tend to show jumps at the beginning and end of the cycle. In the frequency domain, the short-term effects are much stronger than the medium- and long-term effects on all dimensions of the spillover effect. Comparatively, the grey energy is the main information transmitter at the high frequency, whereas it is the green energy playing such a role at medium and low frequencies. Comparing the overall spillovers on carbon markets, the effect of grey energy exceeds that of green energy. Even so, the carbon market plays an important role in the carbon-energy system with extremely significant effects on green and grey energy stocks at certain periods. The results provide profound implications for the management of carbon markets and portfolio optimization.

Suggested Citation

  • Yingying Xu & Xiang Li, 2023. "Green or grey stocks? Dynamic effects of carbon markets based on Chinese practices," Empirical Economics, Springer, vol. 65(6), pages 2521-2547, December.
  • Handle: RePEc:spr:empeco:v:65:y:2023:i:6:d:10.1007_s00181-023-02439-1
    DOI: 10.1007/s00181-023-02439-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-023-02439-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-023-02439-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Acharya, Viral V. & Pedersen, Lasse Heje, 2005. "Asset pricing with liquidity risk," Journal of Financial Economics, Elsevier, vol. 77(2), pages 375-410, August.
    2. Hanif, Waqas & Arreola Hernandez, Jose & Mensi, Walid & Kang, Sang Hoon & Uddin, Gazi Salah & Yoon, Seong-Min, 2021. "Nonlinear dependence and connectedness between clean/renewable energy sector equity and European emission allowance prices," Energy Economics, Elsevier, vol. 101(C).
    3. Ding, Qian & Huang, Jianbai & Zhang, Hongwei, 2022. "Time-frequency spillovers among carbon, fossil energy and clean energy markets: The effects of attention to climate change," International Review of Financial Analysis, Elsevier, vol. 83(C).
    4. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2020. "How connected is the carbon market to energy and financial markets? A systematic analysis of spillovers and dynamics," Energy Economics, Elsevier, vol. 90(C).
    5. Keppler, Jan Horst & Mansanet-Bataller, Maria, 2010. "Causalities between CO2, electricity, and other energy variables during phase I and phase II of the EU ETS," Energy Policy, Elsevier, vol. 38(7), pages 3329-3341, July.
    6. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    7. Jozef Baruník & Tomáš Křehlík, 2018. "Measuring the Frequency Dynamics of Financial Connectedness and Systemic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 16(2), pages 271-296.
    8. Laura E. Kodres & Matthew Pritsker, 2002. "A Rational Expectations Model of Financial Contagion," Journal of Finance, American Finance Association, vol. 57(2), pages 769-799, April.
    9. Chun Jiang & Yi-Fan Wu & Xiao-Lin Li & Xin Li, 2020. "Time-frequency Connectedness between Coal Market Prices, New Energy Stock Prices and CO 2 Emissions Trading Prices in China," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    10. Sadorsky, Perry, 2012. "Modeling renewable energy company risk," Energy Policy, Elsevier, vol. 40(C), pages 39-48.
    11. Hammoudeh, Shawkat & Nguyen, Duc Khuong & Sousa, Ricardo M., 2014. "What explain the short-term dynamics of the prices of CO2 emissions?," Energy Economics, Elsevier, vol. 46(C), pages 122-135.
    12. Wen, Fenghua & Zhao, Lili & He, Shaoyi & Yang, Guozheng, 2020. "Asymmetric relationship between carbon emission trading market and stock market: Evidences from China," Energy Economics, Elsevier, vol. 91(C).
    13. Lin, Boqiang & Chen, Yufang, 2019. "Dynamic linkages and spillover effects between CET market, coal market and stock market of new energy companies: A case of Beijing CET market in China," Energy, Elsevier, vol. 172(C), pages 1198-1210.
    14. Jiménez-Rodríguez, Rebeca, 2019. "What happens to the relationship between EU allowances prices and stock market indices in Europe?," Energy Economics, Elsevier, vol. 81(C), pages 13-24.
    15. Matteo Foglia & Eliana Angelini, 2020. "Volatility Connectedness between Clean Energy Firms and Crude Oil in the COVID-19 Era," Sustainability, MDPI, vol. 12(23), pages 1-22, November.
    16. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    17. Dutta, Anupam & Bouri, Elie & Noor, Md Hasib, 2018. "Return and volatility linkages between CO2 emission and clean energy stock prices," Energy, Elsevier, vol. 164(C), pages 803-810.
    18. Balcılar, Mehmet & Demirer, Rıza & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2016. "Risk spillovers across the energy and carbon markets and hedging strategies for carbon risk," Energy Economics, Elsevier, vol. 54(C), pages 159-172.
    19. Shadbegian, Ronald J. & Gray, Wayne B., 2005. "Pollution abatement expenditures and plant-level productivity: A production function approach," Ecological Economics, Elsevier, vol. 54(2-3), pages 196-208, August.
    20. Maria Mansanet-Bataller & Angel Pardo & Enric Valor, 2007. "CO2 Prices, Energy and Weather," The Energy Journal, , vol. 28(3), pages 73-92, July.
    21. Křehlík, Tomáš & Baruník, Jozef, 2017. "Cyclical properties of supply-side and demand-side shocks in oil-based commodity markets," Energy Economics, Elsevier, vol. 65(C), pages 208-218.
    22. Maria Mansanet-Bataller & Angel Pardo & Enric Valor, 2007. "CO2 Prices, Energy and Weather," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 73-92.
    23. Reboredo, Juan C., 2015. "Is there dependence and systemic risk between oil and renewable energy stock prices?," Energy Economics, Elsevier, vol. 48(C), pages 32-45.
    24. repec:dau:papers:123456789/5269 is not listed on IDEAS
    25. Wang, Yudong & Guo, Zhuangyue, 2018. "The dynamic spillover between carbon and energy markets: New evidence," Energy, Elsevier, vol. 149(C), pages 24-33.
    26. Hammoudeh, Shawkat & Lahiani, Amine & Nguyen, Duc Khuong & Sousa, Ricardo M., 2015. "An empirical analysis of energy cost pass-through to CO2 emission prices," Energy Economics, Elsevier, vol. 49(C), pages 149-156.
    27. Al Mamun, Md & Sohag, Kazi & Shahbaz, Muhammad & Hammoudeh, Shawkat, 2018. "Financial markets, innovations and cleaner energy production in OECD countries," Energy Economics, Elsevier, vol. 72(C), pages 236-254.
    28. Wang, Shu & Zhou, Baicheng & Gao, Tianshu, 2023. "Speculation or actual demand? The return spillover effect between stock and commodity markets," Journal of Commodity Markets, Elsevier, vol. 29(C).
    29. Ferrer, Román & Shahzad, Syed Jawad Hussain & López, Raquel & Jareño, Francisco, 2018. "Time and frequency dynamics of connectedness between renewable energy stocks and crude oil prices," Energy Economics, Elsevier, vol. 76(C), pages 1-20.
    30. Zachmann, Georg, 2013. "A stochastic fuel switching model for electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 5-13.
    31. repec:bla:jfinan:v:44:y:1989:i:1:p:1-17 is not listed on IDEAS
    32. Lv, Chengchao & Bian, Baocheng & Lee, Chien-Chiang & He, Zhiwen, 2021. "Regional gap and the trend of green finance development in China," Energy Economics, Elsevier, vol. 102(C).
    33. Zeqiraj, Veton & Sohag, Kazi & Soytas, Ugur, 2020. "Stock market development and low-carbon economy: The role of innovation and renewable energy," Energy Economics, Elsevier, vol. 91(C).
    34. Dan Nie & Yanbin Li & Xiyu Li, 2021. "Dynamic Spillovers and Asymmetric Spillover Effect between the Carbon Emission Trading Market, Fossil Energy Market, and New Energy Stock Market in China," Energies, MDPI, vol. 14(19), pages 1-22, October.
    35. Zheng, Yan & Yin, Hua & Zhou, Min & Liu, Wenhua & Wen, Fenghua, 2021. "Impacts of oil shocks on the EU carbon emissions allowances under different market conditions," Energy Economics, Elsevier, vol. 104(C).
    36. Wu, Libo & Qian, Haoqi & Li, Jin, 2014. "Advancing the experiment to reality: Perspectives on Shanghai pilot carbon emissions trading scheme," Energy Policy, Elsevier, vol. 75(C), pages 22-30.
    37. Batten, Jonathan A. & Maddox, Grace E. & Young, Martin R., 2021. "Does weather, or energy prices, affect carbon prices?," Energy Economics, Elsevier, vol. 96(C).
    38. Ching-Chun Wei & Ya-Ling Lin, 2016. "Carbon Future Price Return, Oil Future Price Return and Stock Index Future Price Return in the U.S," International Journal of Energy Economics and Policy, Econjournals, vol. 6(4), pages 655-662.
    39. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuqin & Wu, Shan & Zhang, Zeyi, 2022. "Multidimensional risk spillovers among carbon, energy and nonferrous metals markets: Evidence from the quantile VAR network," Energy Economics, Elsevier, vol. 114(C).
    2. Yang, Ming-Yuan & Chen, Zhanghangjian & Liang, Zongzheng & Li, Sai-Ping, 2023. "Dynamic and asymmetric connectedness in the global “Carbon-Energy-Stock” system under shocks from exogenous events," Journal of Commodity Markets, Elsevier, vol. 32(C).
    3. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2020. "How connected is the carbon market to energy and financial markets? A systematic analysis of spillovers and dynamics," Energy Economics, Elsevier, vol. 90(C).
    4. Su, Chi-Wei & Pang, Li-Dong & Qin, Meng & Lobonţ, Oana-Ramona & Umar, Muhammad, 2023. "The spillover effects among fossil fuel, renewables and carbon markets: Evidence under the dual dilemma of climate change and energy crises," Energy, Elsevier, vol. 274(C).
    5. Adekoya, Oluwasegun B. & Oliyide, Johnson A. & Noman, Ambreen, 2021. "The volatility connectedness of the EU carbon market with commodity and financial markets in time- and frequency-domain: The role of the U.S. economic policy uncertainty," Resources Policy, Elsevier, vol. 74(C).
    6. Demiralay, Sercan & Gencer, Hatice Gaye & Bayraci, Selcuk, 2022. "Carbon credit futures as an emerging asset: Hedging, diversification and downside risks," Energy Economics, Elsevier, vol. 113(C).
    7. Guo, Li-Yang & Feng, Chao, 2021. "Are there spillovers among China's pilots for carbon emission allowances trading?," Energy Economics, Elsevier, vol. 103(C).
    8. Chiappari, Mattia & Scotti, Francesco & Flori, Andrea, 2024. "Market responses to spillovers in the energy commodity markets: Evaluating short-term vs. long-term effects and business-as-usual vs. distressed phases," International Review of Financial Analysis, Elsevier, vol. 96(PB).
    9. Lovcha, Yuliya & Perez-Laborda, Alejandro & Sikora, Iryna, 2022. "The determinants of CO2 prices in the EU emission trading system," Applied Energy, Elsevier, vol. 305(C).
    10. Yang Liu & Xueqing Yang & Mei Wang, 2021. "Global Transmission of Returns among Financial, Traditional Energy, Renewable Energy and Carbon Markets: New Evidence," Energies, MDPI, vol. 14(21), pages 1-32, November.
    11. Hanif, Waqas & Arreola Hernandez, Jose & Mensi, Walid & Kang, Sang Hoon & Uddin, Gazi Salah & Yoon, Seong-Min, 2021. "Nonlinear dependence and connectedness between clean/renewable energy sector equity and European emission allowance prices," Energy Economics, Elsevier, vol. 101(C).
    12. Ding, Qian & Huang, Jianbai & Zhang, Hongwei, 2022. "Time-frequency spillovers among carbon, fossil energy and clean energy markets: The effects of attention to climate change," International Review of Financial Analysis, Elsevier, vol. 83(C).
    13. Yi Yao & Lixin Tian & Guangxi Cao, 2022. "The Information Spillover among the Carbon Market, Energy Market, and Stock Market: A Case Study of China’s Pilot Carbon Markets," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    14. Man, Yuanyuan & Zhang, Sunpei & He, Yongda, 2024. "Dynamic risk spillover and hedging efficacy of China’s carbon-energy-finance markets: Economic policy uncertainty and investor sentiment non-linear causal effects," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 1397-1416.
    15. Wu, Ruirui & Qin, Zhongfeng & Liu, Bing-Yue, 2022. "A systemic analysis of dynamic frequency spillovers among carbon emissions trading (CET), fossil energy and sectoral stock markets: Evidence from China," Energy, Elsevier, vol. 254(PA).
    16. Dan Nie & Yanbin Li & Xiyu Li & Xuejiao Zhou & Feng Zhang, 2022. "The Dynamic Spillover between Renewable Energy, Crude Oil and Carbon Market: New Evidence from Time and Frequency Domains," Energies, MDPI, vol. 15(11), pages 1-28, May.
    17. Tang, Chun & Liu, Xiaoxing & Chen, Guangkun, 2023. "The spillover effects in the “Energy – Carbon – Stock” system – Evidence from China," Energy, Elsevier, vol. 278(PA).
    18. Ha, Le Thanh & Bouteska, Ahmed & Sharif, Taimur & Abedin, Mohammad Zoynul, 2024. "Dynamic interlinkages between carbon risk and volatility of green and renewable energy: A TVP-VAR analysis," Research in International Business and Finance, Elsevier, vol. 69(C).
    19. Banerjee, Ameet Kumar & Sensoy, Ahmet & Goodell, John W., 2024. "Connectivity and spillover during crises: Highlighting the prominent and growing role of green energy," Energy Economics, Elsevier, vol. 129(C).
    20. Lovcha, Yuliya & Perez-Laborda, Alejandro, 2022. "Long-memory and volatility spillovers across petroleum futures," Energy, Elsevier, vol. 243(C).

    More about this item

    Keywords

    Carbon market; Green energy; Grey energy; Spillover effect; Carbon emission;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:65:y:2023:i:6:d:10.1007_s00181-023-02439-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.