IDEAS home Printed from https://ideas.repec.org/a/spr/elmark/v28y2018i4d10.1007_s12525-018-0290-9.html
   My bibliography  Save this article

Enhancing energy efficiency in the residential sector with smart meter data analytics

Author

Listed:
  • Konstantin Hopf

    (University of Bamberg)

  • Mariya Sodenkamp

    (University of Bamberg)

  • Thorsten Staake

    (University of Bamberg
    ETH Zürich)

Abstract

Tailored energy efficiency campaigns that make use of household-specific information can trigger substantial energy savings in the residential sector. The information required for such campaigns, however, is often missing. We show that utility companies can extract that information from smart meter data using machine learning. We derive 133 features from smart meter and weather data and use the Random Forest classifier that allows us to recognize 19 household classes related to 11 household characteristics (e.g., electric heating, size of dwelling) with an accuracy of up to 95% (69% on average). The results indicate that even datasets with an hourly or daily resolution are sufficient to impute key household characteristics with decent accuracy and that data from different yearly seasons does not considerably influence the classification performance. Furthermore, we demonstrate that a small training data set consisting of only 200 households already reaches a good performance. Our work may serve as benchmark for upcoming, similar research on smart meter data and provide guidance for practitioners for estimating the efforts of implementing such analytics solutions.

Suggested Citation

  • Konstantin Hopf & Mariya Sodenkamp & Thorsten Staake, 2018. "Enhancing energy efficiency in the residential sector with smart meter data analytics," Electronic Markets, Springer;IIM University of St. Gallen, vol. 28(4), pages 453-473, November.
  • Handle: RePEc:spr:elmark:v:28:y:2018:i:4:d:10.1007_s12525-018-0290-9
    DOI: 10.1007/s12525-018-0290-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12525-018-0290-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12525-018-0290-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goette, Lorenz & Tiefenbeck, Verena & Degen, Kathrin & Fleisch, Elgar & Tasic, Vojkan & Lalive, Rafael & Staake, Thorsten, 2016. "Overcoming Salience Bias: How Real-Time Feedback Fosters Resource Conservation," CEPR Discussion Papers 11480, C.E.P.R. Discussion Papers.
    2. Richard T. Watson & Jeffrey Howells & Marie-Claude Boudreau, 2012. "Energy Informatics: Initial Thoughts on Data and Process Management," Springer Books, in: Jan vom Brocke & Stefan Seidel & Jan Recker (ed.), Green Business Process Management, edition 127, pages 147-159, Springer.
    3. Christoph Flath & David Nicolay & Tobias Conte & Clemens Dinther & Lilia Filipova-Neumann, 2012. "Cluster Analysis of Smart Metering Data," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 4(1), pages 31-39, February.
    4. Carrie Armel, K. & Gupta, Abhay & Shrimali, Gireesh & Albert, Adrian, 2013. "Is disaggregation the holy grail of energy efficiency? The case of electricity," Energy Policy, Elsevier, vol. 52(C), pages 213-234.
    5. Verena Tiefenbeck, 2017. "Bring behaviour into the digital transformation," Nature Energy, Nature, vol. 2(6), pages 1-3, June.
    6. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9-10), pages 1082-1095, October.
    7. Verma, Anoop & Asadi, Ali & Yang, Kai & Tyagi, Satish, 2015. "A data-driven approach to identify households with plug-in electrical vehicles (PEVs)," Applied Energy, Elsevier, vol. 160(C), pages 71-79.
    8. Chicco, Gianfranco, 2012. "Overview and performance assessment of the clustering methods for electrical load pattern grouping," Energy, Elsevier, vol. 42(1), pages 68-80.
    9. Buchanan, Kathryn & Banks, Nick & Preston, Ian & Russo, Riccardo, 2016. "The British public’s perception of the UK smart metering initiative: Threats and opportunities," Energy Policy, Elsevier, vol. 91(C), pages 87-97.
    10. Constantiou, Ioanna D & Kallinikos, Jannis, 2015. "New games, new rules: big data and the changing context of strategy," LSE Research Online Documents on Economics 63017, London School of Economics and Political Science, LSE Library.
    11. Beckel, Christian & Sadamori, Leyna & Staake, Thorsten & Santini, Silvia, 2014. "Revealing household characteristics from smart meter data," Energy, Elsevier, vol. 78(C), pages 397-410.
    12. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9), pages 1082-1095.
    13. McKenna, Eoghan & Richardson, Ian & Thomson, Murray, 2012. "Smart meter data: Balancing consumer privacy concerns with legitimate applications," Energy Policy, Elsevier, vol. 41(C), pages 807-814.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al Khafaf, Nameer & Rezaei, Ahmad Asgharian & Moradi Amani, Ali & Jalili, Mahdi & McGrath, Brendan & Meegahapola, Lasantha & Vahidnia, Arash, 2022. "Impact of battery storage on residential energy consumption: An Australian case study based on smart meter data," Renewable Energy, Elsevier, vol. 182(C), pages 390-400.
    2. Weigert, Andreas & Hopf, Konstantin & Günther, Sebastian A. & Staake, Thorsten, 2022. "Heat pump inspections result in large energy savings when a pre-selection of households is performed: A promising use case of smart meter data," Energy Policy, Elsevier, vol. 169(C).
    3. Barbara Dinter & Jan Krämer, 2018. "Data-driven innovations in electronic markets," Electronic Markets, Springer;IIM University of St. Gallen, vol. 28(4), pages 403-405, November.
    4. Rainer Alt, 2020. "Electronic Markets on sustainability," Electronic Markets, Springer;IIM University of St. Gallen, vol. 30(4), pages 667-674, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shimoda, Yoshiyuki & Yamaguchi, Yohei & Iwafune, Yumiko & Hidaka, Kazuyoshi & Meier, Alan & Yagita, Yoshie & Kawamoto, Hisaki & Nishikiori, Soichi, 2020. "Energy demand science for a decarbonized society in the context of the residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Khosrowpour, Ardalan & Jain, Rishee K. & Taylor, John E. & Peschiera, Gabriel & Chen, Jiayu & Gulbinas, Rimas, 2018. "A review of occupant energy feedback research: Opportunities for methodological fusion at the intersection of experimentation, analytics, surveys and simulation," Applied Energy, Elsevier, vol. 218(C), pages 304-316.
    3. Akito Ozawa & Ryota Furusato & Yoshikuni Yoshida, 2017. "Tailor-Made Feedback to Reduce Residential Electricity Consumption: The Effect of Information on Household Lifestyle in Japan," Sustainability, MDPI, vol. 9(4), pages 1-23, March.
    4. Beckel, Christian & Sadamori, Leyna & Staake, Thorsten & Santini, Silvia, 2014. "Revealing household characteristics from smart meter data," Energy, Elsevier, vol. 78(C), pages 397-410.
    5. Chatzigeorgiou, I.M. & Andreou, G.T., 2021. "A systematic review on feedback research for residential energy behavior change through mobile and web interfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Brülisauer, Marcel & Goette, Lorenz & Jiang, Zhengyi & Schmitz, Jan & Schubert, Renate, 2020. "Appliance-specific feedback and social comparisons: Evidence from a field experiment on energy conservation," Energy Policy, Elsevier, vol. 145(C).
    7. Lang, Corey & Okwelum, Edson, 2015. "The mitigating effect of strategic behavior on the net benefits of a direct load control program," Energy Economics, Elsevier, vol. 49(C), pages 141-148.
    8. Singhal, Puja & Pahle, Michael & Kalkuhl, Matthias & Levesque, Antoine & Sommer, Stephan & Berneiser, Jessica, 2022. "Beyond good faith: Why evidence-based policy is necessary to decarbonize buildings cost-effectively in Germany," Energy Policy, Elsevier, vol. 169(C).
    9. Kwonsik Song & Kyle Anderson & SangHyun Lee & Kaitlin T. Raimi & P. Sol Hart, 2020. "Non-Invasive Behavioral Reference Group Categorization Considering Temporal Granularity and Aggregation Level of Energy Use Data," Energies, MDPI, vol. 13(14), pages 1-21, July.
    10. Anna Kowalska-Pyzalska & Katarzyna Byrka & Jakub Serek, 2020. "How to Foster the Adoption of Electricity Smart Meters? A Longitudinal Field Study of Residential Consumers," Energies, MDPI, vol. 13(18), pages 1-19, September.
    11. Andor, Mark A. & Fels, Katja M., 2018. "Behavioral Economics and Energy Conservation – A Systematic Review of Non-price Interventions and Their Causal Effects," Ecological Economics, Elsevier, vol. 148(C), pages 178-210.
    12. Chen, Victor L. & Delmas, Magali A. & Kaiser, William J. & Locke, Stephen L., 2015. "What can we learn from high-frequency appliance-level energy metering? Results from a field experiment," Energy Policy, Elsevier, vol. 77(C), pages 164-175.
    13. Song, Kwonsik & Anderson, Kyle & Lee, SangHyun, 2020. "An energy-cyber-physical system for personalized normative messaging interventions: Identification and classification of behavioral reference groups," Applied Energy, Elsevier, vol. 260(C).
    14. Ghesla, Claus & Grieder, Manuel & Schmitz, Jan & Stadelmann, Marcel, 2020. "Pro-environmental incentives and loss aversion: A field experiment on electricity saving behavior," Energy Policy, Elsevier, vol. 137(C).
    15. Batalla-Bejerano, Joan & Trujillo-Baute, Elisa & Villa-Arrieta, Manuel, 2020. "Smart meters and consumer behaviour: Insights from the empirical literature," Energy Policy, Elsevier, vol. 144(C).
    16. Dominik Bär & Stefan Feuerriegel & Ting Li & Markus Weinmann, 2023. "Message framing to promote solar panels," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Giraudet, Louis-Gaëtan, 2020. "Energy efficiency as a credence good: A review of informational barriers to energy savings in the building sector," Energy Economics, Elsevier, vol. 87(C).
    18. Andor, Mark A. & Gerster, Andreas & Peters, Jörg & Schmidt, Christoph M., 2020. "Social Norms and Energy Conservation Beyond the US," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    19. Fernanda Spada Villar & Pedro Henrique Juliano Nardelli & Arun Narayanan & Renan Cipriano Moioli & Hader Azzini & Luiz Carlos Pereira da Silva, 2021. "Noninvasive Detection of Appliance Utilization Patterns in Residential Electricity Demand," Energies, MDPI, vol. 14(6), pages 1-23, March.
    20. Schultz, P. Wesley & Estrada, Mica & Schmitt, Joseph & Sokoloski, Rebecca & Silva-Send, Nilmini, 2015. "Using in-home displays to provide smart meter feedback about household electricity consumption: A randomized control trial comparing kilowatts, cost, and social norms," Energy, Elsevier, vol. 90(P1), pages 351-358.

    More about this item

    Keywords

    Green information systems; Decision support systems; Data analytics; Energy efficiency; Sustainability; Classification;
    All these keywords.

    JEL classification:

    • C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General
    • D10 - Microeconomics - - Household Behavior - - - General
    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing
    • Q20 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - General
    • R20 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elmark:v:28:y:2018:i:4:d:10.1007_s12525-018-0290-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.