IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3678-d385554.html
   My bibliography  Save this article

Non-Invasive Behavioral Reference Group Categorization Considering Temporal Granularity and Aggregation Level of Energy Use Data

Author

Listed:
  • Kwonsik Song

    () (Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA)

  • Kyle Anderson

    () (Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA)

  • SangHyun Lee

    () (Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA)

  • Kaitlin T. Raimi

    () (Gerald R. Ford School of Public Policy, University of Michigan, Ann Arbor, MI 48109, USA)

  • P. Sol Hart

    () (Department of Communication and Media, Program in the Environment, University of Michigan, Ann Arbor, MI 48109, USA)

Abstract

Within residences, normative messaging interventions have been gaining interest as a cost-effective way to promote energy-saving behaviors. Behavioral reference groups are one important factor in determining the effectiveness of normative messages. More personally relevant and meaningful groups are likely to promote behavior change. Using readily available energy-use profiles in a non-invasive manner permits the creation of highly personalized reference groups. Unfortunately, how data granularity (e.g., minute and hour) and aggregation (e.g., one week and one month) affect the performance of energy profile-based reference group categorization is not well understood. This research evaluates reference group categorization performance across different levels of data granularity and aggregation. We conduct a clustering analysis using one-year of energy use data from 2248 households in Holland, Michigan USA. The clustering analysis reveals that using six-hour intervals results in more personalized energy profile-based reference groups compared to using more granular data (e.g., 15 min). This also minimizes computational burdens. Further, aggregating energy-use data over all days of twelve weeks increases the group similarity compared to less aggregated data (e.g., weekdays of twelve weeks). The proposed categorization framework enables interveners to create personalized and scalable normative feedback messages.

Suggested Citation

  • Kwonsik Song & Kyle Anderson & SangHyun Lee & Kaitlin T. Raimi & P. Sol Hart, 2020. "Non-Invasive Behavioral Reference Group Categorization Considering Temporal Granularity and Aggregation Level of Energy Use Data," Energies, MDPI, Open Access Journal, vol. 13(14), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3678-:d:385554
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3678/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3678/
    Download Restriction: no

    References listed on IDEAS

    as
    1. Song, Kwonsik & Anderson, Kyle & Lee, SangHyun, 2020. "An energy-cyber-physical system for personalized normative messaging interventions: Identification and classification of behavioral reference groups," Applied Energy, Elsevier, vol. 260(C).
    2. Eunjung Lee & Jinho Kim & Dongsik Jang, 2020. "Load Profile Segmentation for Effective Residential Demand Response Program: Method and Evidence from Korean Pilot Study," Energies, MDPI, Open Access Journal, vol. 13(6), pages 1-18, March.
    3. Jain, Rishee K. & Smith, Kevin M. & Culligan, Patricia J. & Taylor, John E., 2014. "Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy," Applied Energy, Elsevier, vol. 123(C), pages 168-178.
    4. Anderson, Kyle & Song, Kwonsik & Lee, SangHyun & Krupka, Erin & Lee, Hyunsoo & Park, Moonseo, 2017. "Longitudinal analysis of normative energy use feedback on dormitory occupants," Applied Energy, Elsevier, vol. 189(C), pages 623-639.
    5. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9-10), pages 1082-1095, October.
    6. Noah J. Goldstein & Robert B. Cialdini & Vladas Griskevicius, 2008. "A Room with a Viewpoint: Using Social Norms to Motivate Environmental Conservation in Hotels," Journal of Consumer Research, Oxford University Press, vol. 35(3), pages 472-482, March.
    7. Chicco, Gianfranco, 2012. "Overview and performance assessment of the clustering methods for electrical load pattern grouping," Energy, Elsevier, vol. 42(1), pages 68-80.
    8. Fiedler, Marina & Sarstedt, Marko, 2014. "Influence of community design on user behaviors in online communities," Journal of Business Research, Elsevier, vol. 67(11), pages 2258-2268.
    9. Mathew, Paul A. & Dunn, Laurel N. & Sohn, Michael D. & Mercado, Andrea & Custudio, Claudine & Walter, Travis, 2015. "Big-data for building energy performance: Lessons from assembling a very large national database of building energy use," Applied Energy, Elsevier, vol. 140(C), pages 85-93.
    10. Ian Ayres & Sophie Raseman & Alice Shih, 2009. "Evidence from Two Large Field Experiments that Peer Comparison Feedback Can Reduce Residential Energy Usage," NBER Working Papers 15386, National Bureau of Economic Research, Inc.
    11. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9), pages 1082-1095.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Kwonsik & Anderson, Kyle & Lee, SangHyun, 2020. "An energy-cyber-physical system for personalized normative messaging interventions: Identification and classification of behavioral reference groups," Applied Energy, Elsevier, vol. 260(C).
    2. Akito Ozawa & Ryota Furusato & Yoshikuni Yoshida, 2017. "Tailor-Made Feedback to Reduce Residential Electricity Consumption: The Effect of Information on Household Lifestyle in Japan," Sustainability, MDPI, Open Access Journal, vol. 9(4), pages 1-23, March.
    3. Beckel, Christian & Sadamori, Leyna & Staake, Thorsten & Santini, Silvia, 2014. "Revealing household characteristics from smart meter data," Energy, Elsevier, vol. 78(C), pages 397-410.
    4. Bernadeta Gołębiowska & Anna Bartczak & Mikołaj Czajkowski, 2020. "Energy Demand Management and Social Norms," Energies, MDPI, Open Access Journal, vol. 13(15), pages 1-20, July.
    5. Hobman, Elizabeth V. & Frederiks, Elisha R. & Stenner, Karen & Meikle, Sarah, 2016. "Uptake and usage of cost-reflective electricity pricing: Insights from psychology and behavioural economics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 455-467.
    6. Batalla-Bejerano, Joan & Trujillo-Baute, Elisa & Villa-Arrieta, Manuel, 2020. "Smart meters and consumer behaviour: Insights from the empirical literature," Energy Policy, Elsevier, vol. 144(C).
    7. Lucas, Sterenn & Salladarré, Frédéric & Brécard, Dorothée, 2018. "Green consumption and peer effects: Does it work for seafood products?," Food Policy, Elsevier, vol. 76(C), pages 44-55.
    8. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    9. Chatzigeorgiou, I.M. & Andreou, G.T., 2021. "A systematic review on feedback research for residential energy behavior change through mobile and web interfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," Energy Policy, Elsevier, vol. 72(C), pages 164-174.
    11. Katherine L. Dickinson & Hannah Brenkert-Smith & Greg Madonia & Nicholas E. Flores, 2020. "Risk interdependency, social norms, and wildfire mitigation: a choice experiment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1327-1354, August.
    12. Schleich, Joachim & Gassmann, Xavier & Faure, Corinne & Meissner, Thomas, 2016. "Making the implicit explicit: A look inside the implicit discount rate," Energy Policy, Elsevier, vol. 97(C), pages 321-331.
    13. Denis Hilton & Nicolas Treich & Gaetan Lazzara & Philippe Tendil, 2018. "Designing effective nudges that satisfy ethical constraints: the case of environmentally responsible behaviour," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 17(1), pages 27-38, November.
    14. Jacopo Bonan & Pietro Battiston & Jaimie Bleck & Philippe LeMay-Boucher & Stefano Pareglio & Bassirou Sarr & Massimo Tavoni, 2017. "Social Interaction and Technology Adoption: Experimental Evidence from Improved Cookstoves in Mali," Working Papers 2017.47, Fondazione Eni Enrico Mattei.
    15. Andrea Szabo & Gergely Ujhelyi, 2014. "Can Information Reduce Nonpayment for Public Utilities? Experimental Evidence from South Africa," Working Papers 2014-114-31, Department of Economics, University of Houston.
    16. Matilde Giaccherini & David H. Herberich & David Jimenez-Gomez & John A. List & Giovanni Ponti & Michael K. Price, 2019. "The Behavioralist Goes Door-To-Door: Understanding Household Technological Diffusion Using a Theory-Driven Natural Field Experiment," NBER Working Papers 26173, National Bureau of Economic Research, Inc.
    17. Löfgren, Åsa & Nordblom, Katarina, 2020. "A theoretical framework of decision making explaining the mechanisms of nudging," Journal of Economic Behavior & Organization, Elsevier, vol. 174(C), pages 1-12.
    18. Bernadeta Gołębiowska & Anna Bartczak & Mikołaj Czajkowski, 2020. "Energy demand management and social norms – the case study in Poland," Working Papers 2020-25, Faculty of Economic Sciences, University of Warsaw.
    19. Jason Delaney & Sarah Jacobson, 2016. "Payments or Persuasion: Common Pool Resource Management with Price and Non-price Measures," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(4), pages 747-772, December.
    20. Olsthoorn, Mark & Schleich, Joachim & Faure, Corinne, 2019. "Exploring the diffusion of low-energy houses: An empirical study in the European Union," Energy Policy, Elsevier, vol. 129(C), pages 1382-1393.

    More about this item

    Keywords

    household energy consumption; behavior change; normative feedback; behavioral reference group; smart meter;
    All these keywords.

    JEL classification:

    • Q - Agricultural and Natural Resource Economics; Environmental and Ecological Economics
    • Q0 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q49 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3678-:d:385554. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team). General contact details of provider: https://www.mdpi.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.