IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v38y2023i4d10.1007_s00180-022-01287-4.html
   My bibliography  Save this article

Bayesian multilevel logistic regression models: a case study applied to the results of two questionnaires administered to university students

Author

Listed:
  • Cristian David Correa-Álvarez

    (Instituto Tecnológico Metropolitano (ITM))

  • Juan Carlos Salazar-Uribe

    (Universidad Nacional de Colombia (Medellín campus))

  • Luis Raúl Pericchi-Guerra

    (University of Puerto Rico)

Abstract

Bayesian multilevel models—also known as hierarchical or mixed models—are used in situations in which the aim is to model the random effect of groups or levels. In this paper, we conduct a simulation study to compare the predictive ability of 1-level Bayesian multilevel logistic regression models with that of 2-level Bayesian multilevel logistic regression models by using the prior Scaled Beta2 and inverse-gamma distributions to model the standard deviation in the 2-level. Then, these models are employed to estimate the correct answers in two questionnaires administered to university students throughout the first academic semester of 2018. The results show that 2-level models have a better predictive ability and provide more precise probability intervals than 1-level models, particularly when the prior Scaled Beta2 distribution is used to model the standard deviation in the second level. Moreover, the probability intervals of 1-level Bayesian multilevel logistic regression models proved to be more precise when Scaled Beta2 distributions, rather than an inverse-gamma distribution, are employed to model the standard deviation or when 1-level Bayesian multilevel logistic regression models, are used.

Suggested Citation

  • Cristian David Correa-Álvarez & Juan Carlos Salazar-Uribe & Luis Raúl Pericchi-Guerra, 2023. "Bayesian multilevel logistic regression models: a case study applied to the results of two questionnaires administered to university students," Computational Statistics, Springer, vol. 38(4), pages 1791-1810, December.
  • Handle: RePEc:spr:compst:v:38:y:2023:i:4:d:10.1007_s00180-022-01287-4
    DOI: 10.1007/s00180-022-01287-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-022-01287-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-022-01287-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    2. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    3. Bornmann, Lutz & Stefaner, Moritz & de Moya Anegón, Felix & Mutz, Rüdiger, 2016. "Excellence networks in science: A Web-based application based on Bayesian multilevel logistic regression (BMLR) for the identification of institutions collaborating successfully," Journal of Informetrics, Elsevier, vol. 10(1), pages 312-327.
    4. Xiaofei Wang & Nicholas G. Reich & Nicholas J. Horton, 2019. "Enriching Students’ Conceptual Understanding of Confidence Intervals: An Interactive Trivia-Based Classroom Activity," The American Statistician, Taylor & Francis Journals, vol. 73(1), pages 50-55, January.
    5. King, Gary & Zeng, Langche, 2001. "Logistic Regression in Rare Events Data," Political Analysis, Cambridge University Press, vol. 9(2), pages 137-163, January.
    6. Jara, Alejandro & Quintana, Fernando & San Marti­n, Ernesto, 2008. "Linear mixed models with skew-elliptical distributions: A Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 5033-5045, July.
    7. Tang, Nian-Sheng & Duan, Xing-De, 2014. "Bayesian influence analysis of generalized partial linear mixed models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 86-99.
    8. De la Cruz, Rolando & Meza, Cristian & Arribas-Gil, Ana & Carroll, Raymond J., 2016. "Bayesian regression analysis of data with random effects covariates from nonlinear longitudinal measurements," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 94-106.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calabrese, Raffaella & Crook, Jonathan, 2020. "Spatial contagion in mortgage defaults: A spatial dynamic survival model with time and space varying coefficients," European Journal of Operational Research, Elsevier, vol. 287(2), pages 749-761.
    2. Huang Yangxin & Chen Jiaqing & Yan Chunning, 2012. "Mixed-Effects Joint Models with Skew-Normal Distribution for HIV Dynamic Response with Missing and Mismeasured Time-Varying Covariate," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-30, November.
    3. Cancho, Vicente G. & Dey, Dipak K. & Lachos, Victor H. & Andrade, Marinho G., 2011. "Bayesian nonlinear regression models with scale mixtures of skew-normal distributions: Estimation and case influence diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 588-602, January.
    4. Malesios, C., 2016. "Measuring the robustness of the journal h-index with respect to publication and citation values: A Bayesian sensitivity analysis," Journal of Informetrics, Elsevier, vol. 10(3), pages 719-731.
    5. Yangxin Huang & Tao Lu, 2017. "Bayesian inference on partially linear mixed-effects joint models for longitudinal data with multiple features," Computational Statistics, Springer, vol. 32(1), pages 179-196, March.
    6. Nima Nonejad, 2019. "Modeling Persistence and Parameter Instability in Historical Crude Oil Price Data Using a Gibbs Sampling Approach," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1687-1710, April.
    7. Hanze Zhang & Yangxin Huang, 2020. "Quantile regression-based Bayesian joint modeling analysis of longitudinal–survival data, with application to an AIDS cohort study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 339-368, April.
    8. Marjan Mansourian & Anoshirvan Kazemnejad & Iraj Kazemi & Farid Zayeri & Masoud Soheilian, 2012. "Bayesian analysis of longitudinal ordered data with flexible random effects using McMC: application to diabetic macular Edema data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(5), pages 1087-1100, November.
    9. Xin-Yuan Song & Zhao-Hua Lu & Jing-Heng Cai & Edward Ip, 2013. "A Bayesian Modeling Approach for Generalized Semiparametric Structural Equation Models," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 624-647, October.
    10. Matteo Mogliani, 2010. "Residual-based tests for cointegration and multiple deterministic structural breaks: A Monte Carlo study," Working Papers halshs-00564897, HAL.
    11. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    12. Growitsch Christian & Nepal Rabindra & Stronzik Marcus, 2015. "Price Convergence and Information Efficiency in German Natural Gas Markets," German Economic Review, De Gruyter, vol. 16(1), pages 87-103, February.
    13. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    14. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    15. Lee, Chi-Chuan & Lee, Chien-Chiang & Ning, Shao-Lin, 2017. "Dynamic relationship of oil price shocks and country risks," Energy Economics, Elsevier, vol. 66(C), pages 571-581.
    16. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    17. Nautz, Dieter & Strohsal, Till & Netšunajev, Aleksei, 2019. "The Anchoring Of Inflation Expectations In The Short And In The Long Run," Macroeconomic Dynamics, Cambridge University Press, vol. 23(5), pages 1959-1977, July.
    18. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    19. Antonia López Villavicencio & Josep Lluís Raymond Bara, 2006. "The short and long-run determinants of the real exchange rate in Mexico," Working Papers wpdea0606, Department of Applied Economics at Universitat Autonoma of Barcelona.
    20. Raphaël Chiappini & Dominique Torre & Elise Tosi, 2019. "Romania's Unsustainable Stabilization: 1929-1933," GREDEG Working Papers 2019-43, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:38:y:2023:i:4:d:10.1007_s00180-022-01287-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.