IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v20y2023i1d10.1007_s10287-023-00441-7.html
   My bibliography  Save this article

Adaptive evolutionary algorithms for portfolio selection problems

Author

Listed:
  • Gianni Filograsso

    (Ca’ Foscari University of Venice)

  • Giacomo Tollo

    (University of Sannio)

Abstract

In this contribution we propose to solve complex portfolio selection problems via Evolutionary Algorithms (EAs) that resort to adaptive parameter control to manage the Exploration versus Exploitation balance and to find (near)-optimal solutions. This strategy modifies the algorithm’s parameters during execution, and relies on continuous feedbacks provided to the EA with respect to some user-defined criteria. In particular, our study aims to understand whether a standard EA can benefit from a robust method that iteratively selects the crossover operator out of a predefined set, in the context of optimised portfolio choices. We apply this approach to large-scale optimization problems, by tackling a number of NP-hard mixed-integer programming problems. Our results show that generic EAs equipped with single crossover operator do not perform homogeneously across problem instances, whereas the adaptive policy leads to robust (and improved) solutions, by alternating exploration and exploitation on the basis of the features of the current search space.

Suggested Citation

  • Gianni Filograsso & Giacomo Tollo, 2023. "Adaptive evolutionary algorithms for portfolio selection problems," Computational Management Science, Springer, vol. 20(1), pages 1-38, December.
  • Handle: RePEc:spr:comgts:v:20:y:2023:i:1:d:10.1007_s10287-023-00441-7
    DOI: 10.1007/s10287-023-00441-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-023-00441-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-023-00441-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/4688 is not listed on IDEAS
    2. Ledoit, Oliver & Wolf, Michael, 2008. "Robust performance hypothesis testing with the Sharpe ratio," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 850-859, December.
    3. Lwin, Khin T. & Qu, Rong & MacCarthy, Bart L., 2017. "Mean-VaR portfolio optimization: A nonparametric approach," European Journal of Operational Research, Elsevier, vol. 260(2), pages 751-766.
    4. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    5. Alessandra Carleo & Francesco Cesarone & Andrea Gheno & Jacopo Maria Ricci, 2017. "Approximating exact expected utility via portfolio efficient frontiers," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 115-143, November.
    6. Vladimir Rankovic & Mikica Drenovak & Branko Uroševic & Ranko Jelic, 2016. "Mean Univariate-GARCH VaR Portfolio Optimization: Actual Portfolio Approach," CESifo Working Paper Series 5731, CESifo.
    7. Roncalli, Thierry, 2013. "Introduction to Risk Parity and Budgeting," MPRA Paper 47679, University Library of Munich, Germany.
    8. Anthony Brabazon & Peter Keenan, 2004. "A hybrid genetic model for the prediction of corporate failure," Computational Management Science, Springer, vol. 1(3), pages 293-310, October.
    9. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    10. Ronald Hochreiter, 2014. "An Evolutionary Optimization Approach to Risk Parity Portfolio Selection," Papers 1411.7494, arXiv.org, revised Jan 2015.
    11. Pier Francesco Procacci & Tomaso Aste, 2022. "Portfolio optimization with sparse multivariate modeling," Journal of Asset Management, Palgrave Macmillan, vol. 23(6), pages 445-465, October.
    12. Anthony Brabazon & Michael O’Neill, 2004. "Evolving technical trading rules for spot foreign-exchange markets using grammatical evolution," Computational Management Science, Springer, vol. 1(3), pages 311-327, October.
    13. Crama, Y. & Schyns, M., 2003. "Simulated annealing for complex portfolio selection problems," European Journal of Operational Research, Elsevier, vol. 150(3), pages 546-571, November.
    14. M. Gilli & E. Kellezi & H. Hysi, 2006. "A Data-Driven Optimization Heuristic for Downside Risk Minimization," Computing in Economics and Finance 2006 355, Society for Computational Economics.
    15. Dietmar Maringer, 2005. "Distribution assumptions and risk constraints in portfolio optimization," Computational Management Science, Springer, vol. 2(2), pages 139-153, March.
    16. Lin, Chang-Chun & Liu, Yi-Ting, 2008. "Genetic algorithms for portfolio selection problems with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 185(1), pages 393-404, February.
    17. M. A. H. dempster & C. M. Jones, 2001. "A real-time adaptive trading system using genetic programming," Quantitative Finance, Taylor & Francis Journals, vol. 1(4), pages 397-413.
    18. Bethany Hoogs & Thomas Kiehl & Christina Lacomb & Deniz Senturk, 2007. "A genetic algorithm approach to detecting temporal patterns indicative of financial statement fraud," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 15(1‐2), pages 41-56, January.
    19. Chen, Zhiping & Wang, Yi, 2008. "Two-sided coherent risk measures and their application in realistic portfolio optimization," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2667-2673, December.
    20. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    21. Manfred Gilli & Enrico Schumann & Giacomo di Tollo & Gerda Cabej, 2011. "Constructing 130/30-portfolios with the Omega ratio," Journal of Asset Management, Palgrave Macmillan, vol. 12(2), pages 94-108, June.
    22. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    23. Marco Corazza & Giacomo di Tollo & Giovanni Fasano & Raffaele Pesenti, 2021. "A novel hybrid PSO-based metaheuristic for costly portfolio selection problems," Annals of Operations Research, Springer, vol. 304(1), pages 109-137, September.
    24. Markowitz, Harry, 2014. "Mean–variance approximations to expected utility," European Journal of Operational Research, Elsevier, vol. 234(2), pages 346-355.
    25. repec:bla:jfinan:v:58:y:2003:i:4:p:1651-1684 is not listed on IDEAS
    26. Claudia Archetti & Luca Bertazzi & Alain Hertz & M. Grazia Speranza, 2012. "A Hybrid Heuristic for an Inventory Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 101-116, February.
    27. Jobson, J D & Korkie, Bob M, 1981. "Performance Hypothesis Testing with the Sharpe and Treynor Measures," Journal of Finance, American Finance Association, vol. 36(4), pages 889-908, September.
    28. Thiemo Krink & Sandra Paterlini, 2011. "Multiobjective optimization using differential evolution for real-world portfolio optimization," Computational Management Science, Springer, vol. 8(1), pages 157-179, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michele Costola & Bertrand Maillet & Zhining Yuan & Xiang Zhang, 2024. "Mean–variance efficient large portfolios: a simple machine learning heuristic technique based on the two-fund separation theorem," Annals of Operations Research, Springer, vol. 334(1), pages 133-155, March.
    2. Meade, N. & Beasley, J.E. & Adcock, C.J., 2021. "Quantitative portfolio selection: Using density forecasting to find consistent portfolios," European Journal of Operational Research, Elsevier, vol. 288(3), pages 1053-1067.
    3. Francesco Cesarone & Manuel L. Martino & Fabio Tardella, 2023. "Mean-Variance-VaR portfolios: MIQP formulation and performance analysis," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(3), pages 1043-1069, September.
    4. Kremer, Philipp J. & Lee, Sangkyun & Bogdan, Małgorzata & Paterlini, Sandra, 2020. "Sparse portfolio selection via the sorted ℓ1-Norm," Journal of Banking & Finance, Elsevier, vol. 110(C).
    5. Konstantinos Anagnostopoulos & Georgios Mamanis, 2011. "Multiobjective evolutionary algorithms for complex portfolio optimization problems," Computational Management Science, Springer, vol. 8(3), pages 259-279, August.
    6. Peter Nystrup & Stephen Boyd & Erik Lindström & Henrik Madsen, 2019. "Multi-period portfolio selection with drawdown control," Annals of Operations Research, Springer, vol. 282(1), pages 245-271, November.
    7. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    8. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    9. Jacobs, Heiko & Müller, Sebastian & Weber, Martin, 2014. "How should individual investors diversify? An empirical evaluation of alternative asset allocation policies," Journal of Financial Markets, Elsevier, vol. 19(C), pages 62-85.
    10. Burkhardt, Raphael & Ulrych, Urban, 2023. "Sparse and stable international portfolio optimization and currency risk management," Journal of International Money and Finance, Elsevier, vol. 139(C).
    11. Massimiliano Kaucic & Mojtaba Moradi & Mohmmad Mirzazadeh, 2019. "Portfolio optimization by improved NSGA-II and SPEA 2 based on different risk measures," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-28, December.
    12. Erindi Allaj, 2020. "The Black–Litterman model and views from a reverse optimization procedure: an out-of-sample performance evaluation," Computational Management Science, Springer, vol. 17(3), pages 465-492, October.
    13. Santos, André Alves Portela & Ferreira, Alexandre R., 2017. "On the choice of covariance specifications for portfolio selection problems," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 37(1), May.
    14. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2022. "Sparsity and stability for minimum-variance portfolios," Risk Management, Palgrave Macmillan, vol. 24(3), pages 214-235, September.
    15. Mehmet Caner & Qingliang Fan & Yingying Li, 2024. "Navigating Complexity: Constrained Portfolio Analysis in High Dimensions with Tracking Error and Weight Constraints," Papers 2402.17523, arXiv.org.
    16. Caner, Mehmet & Medeiros, Marcelo & Vasconcelos, Gabriel F.R., 2023. "Sharpe Ratio analysis in high dimensions: Residual-based nodewise regression in factor models," Journal of Econometrics, Elsevier, vol. 235(2), pages 393-417.
    17. Philipp J. Kremer & Andreea Talmaciu & Sandra Paterlini, 2018. "Risk minimization in multi-factor portfolios: What is the best strategy?," Annals of Operations Research, Springer, vol. 266(1), pages 255-291, July.
    18. Olivier Ledoit & Michael Wolf, 2018. "Robust performance hypothesis testing with smooth functions of population moments," ECON - Working Papers 305, Department of Economics - University of Zurich.
    19. Lassance, Nathan, 2022. "Reconciling mean-variance portfolio theory with non-Gaussian returns," European Journal of Operational Research, Elsevier, vol. 297(2), pages 729-740.
    20. Harris, Richard D. F. & Mazibas, Murat, 2022. "Portfolio optimization with behavioural preferences and investor memory," European Journal of Operational Research, Elsevier, vol. 296(1), pages 368-387.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:20:y:2023:i:1:d:10.1007_s10287-023-00441-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.