IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1411.7494.html
   My bibliography  Save this paper

An Evolutionary Optimization Approach to Risk Parity Portfolio Selection

Author

Listed:
  • Ronald Hochreiter

Abstract

In this paper we present an evolutionary optimization approach to solve the risk parity portfolio selection problem. While there exist convex optimization approaches to solve this problem when long-only portfolios are considered, the optimization problem becomes non-trivial in the long-short case. To solve this problem, we propose a genetic algorithm as well as a local search heuristic. This algorithmic framework is able to compute solutions successfully. Numerical results using real-world data substantiate the practicability of the approach presented in this paper.

Suggested Citation

  • Ronald Hochreiter, 2014. "An Evolutionary Optimization Approach to Risk Parity Portfolio Selection," Papers 1411.7494, arXiv.org, revised Jan 2015.
  • Handle: RePEc:arx:papers:1411.7494
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1411.7494
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    2. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    3. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    4. repec:dau:papers:123456789/4688 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gilles Boevi Koumou, 2020. "Diversification and portfolio theory: a review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 267-312, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Lautizi, 2015. "Large Scale Covariance Estimates for Portfolio Selection," CEIS Research Paper 353, Tor Vergata University, CEIS, revised 07 Aug 2015.
    2. Yen, Yu-Min & Yen, Tso-Jung, 2014. "Solving norm constrained portfolio optimization via coordinate-wise descent algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 737-759.
    3. Füss, Roland & Miebs, Felix & Trübenbach, Fabian, 2014. "A jackknife-type estimator for portfolio revision," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 14-28.
    4. Hautsch, Nikolaus & Voigt, Stefan, 2019. "Large-scale portfolio allocation under transaction costs and model uncertainty," Journal of Econometrics, Elsevier, vol. 212(1), pages 221-240.
    5. Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
    6. Simaan, Majeed & Simaan, Yusif & Tang, Yi, 2018. "Estimation error in mean returns and the mean-variance efficient frontier," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 109-124.
    7. Jonathan Fletcher, 2009. "Risk Reduction and Mean‐Variance Analysis: An Empirical Investigation," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 36(7‐8), pages 951-971, September.
    8. Miralles-Marcelo, José Luis & Miralles-Quirós, María del Mar & Miralles-Quirós, José Luis, 2015. "Improving international diversification benefits for US investors," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 64-76.
    9. Ardia, David & Boudt, Kris & Wauters, Marjan, 2016. "The economic benefits of market timing the style allocation of characteristic-based portfolios," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 38-62.
    10. Fletcher, Jonathan, 2011. "Do optimal diversification strategies outperform the 1/N strategy in U.K. stock returns?," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 375-385.
    11. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    12. Carroll, Rachael & Conlon, Thomas & Cotter, John & Salvador, Enrique, 2017. "Asset allocation with correlation: A composite trade-off," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1164-1180.
    13. Behr, Patrick & Guettler, Andre & Truebenbach, Fabian, 2012. "Using industry momentum to improve portfolio performance," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1414-1423.
    14. Bruno Scalzo Dees & Ljubisa Stankovic & Anthony G. Constantinides & Danilo P. Mandic, 2019. "Portfolio Cuts: A Graph-Theoretic Framework to Diversification," Papers 1910.05561, arXiv.org, revised Oct 2019.
    15. Maller, Ross & Roberts, Steven & Tourky, Rabee, 2016. "The large-sample distribution of the maximum Sharpe ratio with and without short sales," Journal of Econometrics, Elsevier, vol. 194(1), pages 138-152.
    16. Asmerilda Hitaj & Giovanni Zambruno, 2016. "Are Smart Beta strategies suitable for hedge fund portfolios?," Review of Financial Economics, John Wiley & Sons, vol. 29(1), pages 37-51, April.
    17. Levy, Haim & Levy, Moshe, 2014. "The benefits of differential variance-based constraints in portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 372-381.
    18. Dai, Zhifeng & Wang, Fei, 2019. "Sparse and robust mean–variance portfolio optimization problems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1371-1378.
    19. Xing, Xin & Hu, Jinjin & Yang, Yaning, 2014. "Robust minimum variance portfolio with L-infinity constraints," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 107-117.
    20. Yan, Cheng & Zhang, Huazhu, 2017. "Mean-variance versus naïve diversification: The role of mispricing," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 61-81.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1411.7494. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.