IDEAS home Printed from https://ideas.repec.org/a/pal/assmgt/v12y2011i2d10.1057_jam.2010.25.html
   My bibliography  Save this article

Constructing 130/30-portfolios with the Omega ratio

Author

Listed:
  • Manfred Gilli

    (University of Geneva and Swiss Finance Institute)

  • Enrico Schumann
  • Giacomo di Tollo
  • Gerda Cabej

Abstract

We construct portfolios with an alternative selection criterion, the Omega function, which can be expressed as the ratio of two partial moments of a portfolio's return distribution. The main purpose of the article is to investigate the empirical performance of the selected portfolios, especially the effects of allowing short positions. Many studies on portfolio optimisation assume that short sales are not allowed. This is despite the fact that theoretically, short positions can improve the risk-return characteristics of a portfolio, and practically, institutional investors can and do sell stocks short. We investigate whether removing the non-negativity constraint really improves out-of-sample portfolio performance under realistic assumptions, that is when optimal weights need to be estimated from the data and different transaction costs apply to long and short positions.

Suggested Citation

  • Manfred Gilli & Enrico Schumann & Giacomo di Tollo & Gerda Cabej, 2011. "Constructing 130/30-portfolios with the Omega ratio," Journal of Asset Management, Palgrave Macmillan, vol. 12(2), pages 94-108, June.
  • Handle: RePEc:pal:assmgt:v:12:y:2011:i:2:d:10.1057_jam.2010.25
    DOI: 10.1057/jam.2010.25
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jam.2010.25
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/jam.2010.25?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farinelli, Simone & Ferreira, Manuel & Rossello, Damiano & Thoeny, Markus & Tibiletti, Luisa, 2008. "Beyond Sharpe ratio: Optimal asset allocation using different performance ratios," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2057-2063, October.
    2. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," The Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    3. Fishburn, Peter C, 1977. "Mean-Risk Analysis with Risk Associated with Below-Target Returns," American Economic Review, American Economic Association, vol. 67(2), pages 116-126, March.
    4. Christian Pedersen & Stephen Satchell, 2002. "On the foundation of performance measures under asymmetric returns," Quantitative Finance, Taylor & Francis Journals, vol. 2(3), pages 217-223.
    5. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    6. Louis K.C. Chan & Jason Karceski & Josef Lakonishok, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," NBER Working Papers 7039, National Bureau of Economic Research, Inc.
    7. Christian S. Pedersen & Stephen E. Satchell, 1998. "An Extended Family of Financial-Risk Measures," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 23(2), pages 89-117, December.
    8. Gunter Dueck & Peter Winker, 1992. "New concepts and algorithms for portfolio choice," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 8(3), pages 159-178, September.
    9. Bruce I. Jacobs & Kenneth N. Levy & Harry M. Markowitz, 2005. "Portfolio Optimization with Factors, Scenarios, and Realistic Short Positions," Operations Research, INFORMS, vol. 53(4), pages 586-599, August.
    10. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    11. John L. G. Board & Charles M. S. Sutcliffe, 1994. "Estimation Methods in Portfolio Selection and the Effectiveness of Short Sales Restrictions: UK Evidence," Management Science, INFORMS, vol. 40(4), pages 516-534, April.
    12. Chan, Louis K C & Karceski, Jason & Lakonishok, Josef, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," The Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 937-974.
    13. Kalman J. Cohen & Jerry A. Pogue, 1967. "An Empirical Evaluation of Alternative Portfolio-Selection Models," The Journal of Business, University of Chicago Press, vol. 40, pages 166-166.
    14. Manfred GILLI & Enrico SCHUMANN, 2009. "An Empirical Analysis of Alternative Portfolio Selection Criteria," Swiss Finance Institute Research Paper Series 09-06, Swiss Finance Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo Acosta-Gonz�lez & Reinaldo Armas-Herrera & Fernando Fern�ndez-Rodr�guez, 2015. "On the index tracking and the statistical arbitrage choosing the stocks by means of cointegration: the role of stock picking," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1075-1091, June.
    2. Carole Bernard & Massimiliano Caporin & Bertrand Maillet & Xiang Zhang, 2023. "Omega Compatibility: A Meta-analysis," Computational Economics, Springer;Society for Computational Economics, vol. 62(2), pages 493-526, August.
    3. Gianni Filograsso & Giacomo Tollo, 2023. "Adaptive evolutionary algorithms for portfolio selection problems," Computational Management Science, Springer, vol. 20(1), pages 1-38, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seyoung Park & Eun Ryung Lee & Sungchul Lee & Geonwoo Kim, 2019. "Dantzig Type Optimization Method with Applications to Portfolio Selection," Sustainability, MDPI, vol. 11(11), pages 1-32, June.
    2. Füss, Roland & Miebs, Felix & Trübenbach, Fabian, 2014. "A jackknife-type estimator for portfolio revision," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 14-28.
    3. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    4. Víctor Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, 2017. "“Resolution of optimization problems and construction of efficient portfolios: An application to the Euro Stoxx 50 index"," IREA Working Papers 201702, University of Barcelona, Research Institute of Applied Economics, revised Feb 2017.
    5. Jonathan Fletcher, 2009. "Risk Reduction and Mean‐Variance Analysis: An Empirical Investigation," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 36(7‐8), pages 951-971, September.
    6. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    7. Taras Bodnar & Mathias Lindholm & Erik Thorsén & Joanna Tyrcha, 2021. "Quantile-based optimal portfolio selection," Computational Management Science, Springer, vol. 18(3), pages 299-324, July.
    8. Harris, Richard D.F. & Stoja, Evarist & Tan, Linzhi, 2017. "The dynamic Black–Litterman approach to asset allocation," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1085-1096.
    9. Erindi Allaj, 2020. "The Black–Litterman model and views from a reverse optimization procedure: an out-of-sample performance evaluation," Computational Management Science, Springer, vol. 17(3), pages 465-492, October.
    10. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2017. "Portfolio selection with mental accounts and estimation risk," Journal of Empirical Finance, Elsevier, vol. 41(C), pages 161-186.
    11. Bertrand, Philippe & Prigent, Jean-luc, 2011. "Omega performance measure and portfolio insurance," Journal of Banking & Finance, Elsevier, vol. 35(7), pages 1811-1823, July.
    12. Wolff, Dominik & Bessler, Wolfgang & Opfer, Heiko, 2012. "Multi-Asset Portfolio Optimization and Out-of-Sample Performance: An Evaluation of Black-Litterman, Mean Variance and Naïve Diversification Approaches," VfS Annual Conference 2012 (Goettingen): New Approaches and Challenges for the Labor Market of the 21st Century 62020, Verein für Socialpolitik / German Economic Association.
    13. Eom, Cheoljun & Park, Jong Won, 2018. "A new method for better portfolio investment: A case of the Korean stock market," Pacific-Basin Finance Journal, Elsevier, vol. 49(C), pages 213-231.
    14. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    15. Hsu, Po-Hsuan & Han, Qiheng & Wu, Wensheng & Cao, Zhiguang, 2018. "Asset allocation strategies, data snooping, and the 1 / N rule," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 257-269.
    16. Kourtis, Apostolos & Dotsis, George & Markellos, Raphael N., 2012. "Parameter uncertainty in portfolio selection: Shrinking the inverse covariance matrix," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2522-2531.
    17. Sandra Cruz Caçador & Pedro Manuel Cortesão Godinho & Joana Maria Pina Cabral Matos Dias, 2022. "A minimax regret portfolio model based on the investor’s utility loss," Operational Research, Springer, vol. 22(1), pages 449-484, March.
    18. Meade, N. & Beasley, J.E. & Adcock, C.J., 2021. "Quantitative portfolio selection: Using density forecasting to find consistent portfolios," European Journal of Operational Research, Elsevier, vol. 288(3), pages 1053-1067.
    19. Phelim Boyle & Lorenzo Garlappi & Raman Uppal & Tan Wang, 2012. "Keynes Meets Markowitz: The Trade-Off Between Familiarity and Diversification," Management Science, INFORMS, vol. 58(2), pages 253-272, February.
    20. Cheng Yan & Ji Yan, 2021. "Optimal and naive diversification in an emerging market: Evidence from China's A‐shares market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3740-3758, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:assmgt:v:12:y:2011:i:2:d:10.1057_jam.2010.25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.