IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v162y2020i4d10.1007_s10584-020-02758-7.html
   My bibliography  Save this article

Contesting the climate

Author

Listed:
  • Muhammet A. Bas

    (New York University Abu Dhabi)

  • Aseem Mahajan

    (Harvard University)

Abstract

Scientists predict higher global temperatures over this century. While this may benefit some countries, most will face varying degrees of damage. This has motivated research on solar geoengineering, a technology that allows countries to unilaterally and temporarily lower global temperatures. To better understand the security implications of this technology, we develop a simple theory that incorporates solar geoengineering, countergeoengineering to reverse its effects, and the use of military force to prevent others from modifying temperatures. We find that when countries’ temperature preferences diverge, applications of geoengineering and countergeoengineering can be highly wasteful due to deployment in opposite directions. Under certain conditions, countries may prefer military interventions over peaceful ones. Cooperation that avoids costs or waste of resources can emerge in repeated settings, but difficulties in monitoring or attributing interventions make such arrangements less attractive.

Suggested Citation

  • Muhammet A. Bas & Aseem Mahajan, 2020. "Contesting the climate," Climatic Change, Springer, vol. 162(4), pages 1985-2002, October.
  • Handle: RePEc:spr:climat:v:162:y:2020:i:4:d:10.1007_s10584-020-02758-7
    DOI: 10.1007/s10584-020-02758-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02758-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02758-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johannes Urpelainen, 2012. "Geoengineering and global warming: a strategic perspective," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 12(4), pages 375-389, November.
    2. Patrick J. Egan & Megan Mullin, 2016. "Recent improvement and projected worsening of weather in the United States," Nature, Nature, vol. 532(7599), pages 357-360, April.
    3. Fearon, James D., 1995. "Rationalist explanations for war," International Organization, Cambridge University Press, vol. 49(3), pages 379-414, July.
    4. Matthew J. Hornsey & Emily A. Harris & Paul G. Bain & Kelly S. Fielding, 2016. "Meta-analyses of the determinants and outcomes of belief in climate change," Nature Climate Change, Nature, vol. 6(6), pages 622-626, June.
    5. Martin L. Weitzman, 2015. "A Voting Architecture for the Governance of Free-Driver Externalities, with Application to Geoengineering," Scandinavian Journal of Economics, Wiley Blackwell, vol. 117(4), pages 1049-1068, October.
    6. Acemoglu, Daron & Rafey, Will, 2023. "Mirage on the horizon: Geoengineering and carbon taxation without commitment," Journal of Public Economics, Elsevier, vol. 219(C).
    7. Adam Millard-Ball, 2012. "The Tuvalu Syndrome," Climatic Change, Springer, vol. 110(3), pages 1047-1066, February.
    8. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    9. Ian D. Lloyd & Michael Oppenheimer, 2014. "On the Design of an International Governance Framework for Geoengineering," Global Environmental Politics, MIT Press, vol. 14(2), pages 45-63, May.
    10. Naomi Vaughan & Timothy Lenton, 2011. "A review of climate geoengineering proposals," Climatic Change, Springer, vol. 109(3), pages 745-790, December.
    11. Douglas G. MacMartin & Peter J. Irvine & Ben Kravitz & Joshua B. Horton, 2019. "Technical characteristics of a solar geoengineering deployment and implications for governance," Climate Policy, Taylor & Francis Journals, vol. 19(10), pages 1325-1339, November.
    12. Bas, Muhammet A. & Coe, Andrew J., 2016. "A Dynamic Theory of Nuclear Proliferation and Preventive War," International Organization, Cambridge University Press, vol. 70(4), pages 655-685, October.
    13. Adam Meirowitz & Massimo Morelli & Kristopher W. Ramsay & Francesco Squintani, 2019. "Dispute Resolution Institutions and Strategic Militarization," Journal of Political Economy, University of Chicago Press, vol. 127(1), pages 378-418.
    14. Moreno-Cruz, Juan B., 2015. "Mitigation and the geoengineering threat," Resource and Energy Economics, Elsevier, vol. 41(C), pages 248-263.
    15. H. Buhaug & J. Nordkvelle & T. Bernauer & T. Böhmelt & M. Brzoska & J. Busby & A. Ciccone & H. Fjelde & E. Gartzke & N. Gleditsch & J. Goldstone & H. Hegre & H. Holtermann & V. Koubi & J. Link & P. Li, 2014. "One effect to rule them all? A comment on climate and conflict," Climatic Change, Springer, vol. 127(3), pages 391-397, December.
    16. Massimo Morelli, 2009. "Institutional design and conflict: an introduction," Review of Economic Design, Springer;Society for Economic Design, vol. 13(3), pages 167-170, September.
    17. Heyen, Daniel & Horton, Joshua & Moreno-Cruz, Juan, 2019. "Strategic implications of counter-geoengineering: Clash or cooperation?," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 153-177.
    18. Scott Barrett, 2014. "Solar Geoengineering’s Brave New World: Thoughts on the Governance of an Unprecedented Technology," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 8(2), pages 249-269.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Todd Sandler, 2018. "Collective action and geoengineering," The Review of International Organizations, Springer, vol. 13(1), pages 105-125, March.
    2. Michael Finus & Francesco Furini, 2022. "Global Climate Governance in the Light of Geoengineering: A Shot in the Dark?," Graz Economics Papers 2022-02, University of Graz, Department of Economics.
    3. Richard S.J. Tol, 2016. "Distributional Implications of Geoengineering," Working Paper Series 08316, Department of Economics, University of Sussex Business School.
    4. Rickels, Wilfried & Quaas, Martin F. & Ricke, Katharine & Quaas, Johannes & Moreno-Cruz, Juan & Smulders, Sjak, 2020. "Who turns the global thermostat and by how much?," Energy Economics, Elsevier, vol. 91(C).
    5. Richard S.J. Tol, 2016. "Distributional Implications of Geoengineering," Working Paper Series 8316, Department of Economics, University of Sussex.
    6. Heyen, Daniel & Horton, Joshua & Moreno-Cruz, Juan, 2019. "Strategic implications of counter-geoengineering: Clash or cooperation?," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 153-177.
    7. Adrien Fabre & Gernot Wagner, 2020. "Availability of risky geoengineering can make an ambitious climate mitigation agreement more likely," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-4, December.
    8. Juan Moreno-Cruz & Anthony Harding, 2022. "A Unifying Theory of Foreign Intervention in Domestic Climate Policy," CESifo Working Paper Series 10172, CESifo.
    9. Irina Bakalova & Mariia Belaia, 2023. "Stability of Efficient International Agreements on Solar Geoengineering," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 86(3), pages 673-712, November.
    10. Johannes Emmerling & Massimo Tavoni, 2017. "Quantifying Non-cooperative Climate Engineering," Working Papers 2017.58, Fondazione Eni Enrico Mattei.
    11. Duncan McLaren & Olaf Corry, 2021. "Clash of Geofutures and the Remaking of Planetary Order: Faultlines underlying Conflicts over Geoengineering Governance," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 20-33, April.
    12. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2018. "Solar geoengineering, uncertainty, and the price of carbon," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 24-41.
    13. Piergiuseppe Pezzoli & Johannes Emmerling & Massimo Tavoni, 2023. "SRM on the table: the role of geoengineering for the stability and effectiveness of climate coalitions," Climatic Change, Springer, vol. 176(10), pages 1-21, October.
    14. Todd L. Cherry & Steffen Kallbekken & Stephan Kroll & David M. McEvoy, 2021. "Does solar geoengineering crowd out climate change mitigation efforts? Evidence from a stated preference referendum on a carbon tax," Climatic Change, Springer, vol. 165(1), pages 1-8, March.
    15. Garth Heutel & Juan Moreno-Cruz & Katharine Ricke, 2016. "Climate Engineering Economics," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 99-118, October.
    16. Moreno-Cruz, Juan & Harding, Anthony, 2023. "A Unifying Theory of Foreign Intervention in Domestic Climate Policy," RFF Working Paper Series 23-24, Resources for the Future.
    17. Markus Eigruber & Franz Wirl, 2018. "Climate Engineering in an Interconnected World: The Role of Tariffs," Dynamic Games and Applications, Springer, vol. 8(3), pages 573-587, September.
    18. Johannes Emmerling & Vassiliki Manoussi & Anastasios Xepapadeas, 2016. "Climate Engineering under Deep Uncertainty and Heterogeneity," Working Papers 2016.52, Fondazione Eni Enrico Mattei.
    19. Niklas V. Lehmann, 2022. "Exploring the stability of solar geoengineering agreements," Papers 2210.09145, arXiv.org, revised May 2023.
    20. Ryo Moriyama & Masahiro Sugiyama & Atsushi Kurosawa & Kooiti Masuda & Kazuhiro Tsuzuki & Yuki Ishimoto, 2017. "The cost of stratospheric climate engineering revisited," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(8), pages 1207-1228, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:162:y:2020:i:4:d:10.1007_s10584-020-02758-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.