IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v7y2020i1d10.1057_s41599-020-0492-6.html
   My bibliography  Save this article

Availability of risky geoengineering can make an ambitious climate mitigation agreement more likely

Author

Listed:
  • Adrien Fabre

    (Paris School of Economics
    Université Paris 1 Panthéon-Sorbonne)

  • Gernot Wagner

    (New York University Department of Environmental Studies
    NYU Wagner School of Public Service)

Abstract

Some countries prefer high to low mitigation (H ≻ L). Some prefer low to high (L ≻ H). That fundamental disagreement is at the heart of the seeming intractability of negotiating a climate mitigation agreement. Modelling global climate negotiations as a weakest-link game brings this to the fore: Unless everyone prefers H to L, L wins. Enter geoengineering (G). Its risky and imperfect nature makes it arguably inferior to any country’s preferred mitigation outcome. However, absent a global high-mitigation agreement, countries facing disastrous climate damages might indeed wish to undertake it, effectively ranking H ≻ G ≻ L. Meanwhile, those least affected by climate damages and, thus, least inclined to agree to an ambitious mitigation agreement, might be unwilling to engage in risky geoengineering, resulting in L ≻ H ≻ G. With these rankings, all players prefer H to G, and the mere availability of a credible geoengineering threat might help induce an ambitious climate mitigation agreement (H). The analysis here introduces the simplest possible model of global climate negotiations and derives the conditions for this outcome. These conditions may indeed be likely, as long as geoengineering is viewed as a credible albeit risky emergency response given the danger of low mitigation levels.

Suggested Citation

  • Adrien Fabre & Gernot Wagner, 2020. "Availability of risky geoengineering can make an ambitious climate mitigation agreement more likely," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-4, December.
  • Handle: RePEc:pal:palcom:v:7:y:2020:i:1:d:10.1057_s41599-020-0492-6
    DOI: 10.1057/s41599-020-0492-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-020-0492-6
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-020-0492-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Moreno-Cruz, Juan B., 2015. "Mitigation and the geoengineering threat," Resource and Energy Economics, Elsevier, vol. 41(C), pages 248-263.
    2. Martin L. Weitzman, 2015. "A Voting Architecture for the Governance of Free-Driver Externalities, with Application to Geoengineering," Scandinavian Journal of Economics, Wiley Blackwell, vol. 117(4), pages 1049-1068, October.
    3. Adam Millard-Ball, 2012. "The Tuvalu Syndrome," Climatic Change, Springer, vol. 110(3), pages 1047-1066, February.
    4. Matthew J. Kotchen, 2018. "Which Social Cost of Carbon? A Theoretical Perspective," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(3), pages 673-694.
    5. Moreno-Cruz, Juan B. & Wagner, Gernot & Keith, David w., 2017. "An Economic Anatomy of Optimal Climate Policy," Working Paper Series rwp17-028, Harvard University, John F. Kennedy School of Government.
    6. Heyen, Daniel & Horton, Joshua & Moreno-Cruz, Juan, 2019. "Strategic implications of counter-geoengineering: Clash or cooperation?," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 153-177.
    7. Todd Sandler, 2018. "Collective action and geoengineering," The Review of International Organizations, Springer, vol. 13(1), pages 105-125, March.
    8. Johannes Urpelainen, 2012. "Geoengineering and global warming: a strategic perspective," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 12(4), pages 375-389, November.
    9. Merk, Christine & Pönitzsch, Gert & Rehdanz, Katrin, 2015. "Knowledge about aerosol injection does not reduce individual mitigation efforts," Kiel Working Papers 2006, Kiel Institute for the World Economy (IfW Kiel).
    10. Quaas, Martin F. & Quaas, Johannes & Rickels, Wilfried & Boucher, Olivier, 2017. "Are there reasons against open-ended research into solar radiation management? A model of intergenerational decision-making under uncertainty," Journal of Environmental Economics and Management, Elsevier, vol. 84(C), pages 1-17.
    11. Gernot Wagner & Tomas Kåberger & Susanna Olai & Michael Oppenheimer & Katherine Rittenhouse & Thomas Sterner, 2015. "Energy policy: Push renewables to spur carbon pricing," Nature, Nature, vol. 525(7567), pages 27-29, September.
    12. Barrett, Scott, 1994. "Self-Enforcing International Environmental Agreements," Oxford Economic Papers, Oxford University Press, vol. 46(0), pages 878-894, Supplemen.
    13. Kenneth Gillingham & James H. Stock, 2018. "The Cost of Reducing Greenhouse Gas Emissions," Journal of Economic Perspectives, American Economic Association, vol. 32(4), pages 53-72, Fall.
    14. Michaël Aklin & Matto Mildenberger, 2020. "Prisoners of the Wrong Dilemma: Why Distributive Conflict, Not Collective Action, Characterizes the Politics of Climate Change," Global Environmental Politics, MIT Press, vol. 20(4), pages 4-27, Autumn.
    15. William Nordhaus, 2015. "Climate Clubs: Overcoming Free-Riding in International Climate Policy," American Economic Review, American Economic Association, vol. 105(4), pages 1339-1370, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Finus, Michael & Furini, Francesco, 2023. "Global climate governance in the light of geoengineering: A shot in the dark?," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    2. Niklas V. Lehmann, 2022. "Exploring the stability of solar geoengineering agreements," Papers 2210.09145, arXiv.org, revised May 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Finus & Francesco Furini, 2022. "Global Climate Governance in the Light of Geoengineering: A Shot in the Dark?," Graz Economics Papers 2022-02, University of Graz, Department of Economics.
    2. Juan Moreno-Cruz & Anthony Harding, 2022. "A Unifying Theory of Foreign Intervention in Domestic Climate Policy," CESifo Working Paper Series 10172, CESifo.
    3. Finus, Michael & Furini, Francesco, 2023. "Global climate governance in the light of geoengineering: A shot in the dark?," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    4. Emmerling, Johannes & Tavoni, Massimo, 2017. "Quantifying Non-cooperative Climate Engineering," MITP: Mitigation, Innovation and Transformation Pathways 266289, Fondazione Eni Enrico Mattei (FEEM).
    5. Muhammet A. Bas & Aseem Mahajan, 2020. "Contesting the climate," Climatic Change, Springer, vol. 162(4), pages 1985-2002, October.
    6. Heyen, Daniel & Horton, Joshua & Moreno-Cruz, Juan, 2019. "Strategic implications of counter-geoengineering: Clash or cooperation?," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 153-177.
    7. Piergiuseppe Pezzoli & Johannes Emmerling & Massimo Tavoni, 2023. "SRM on the table: the role of geoengineering for the stability and effectiveness of climate coalitions," Climatic Change, Springer, vol. 176(10), pages 1-21, October.
    8. Todd L. Cherry & Steffen Kallbekken & Stephan Kroll & David M. McEvoy, 2021. "Does solar geoengineering crowd out climate change mitigation efforts? Evidence from a stated preference referendum on a carbon tax," Climatic Change, Springer, vol. 165(1), pages 1-8, March.
    9. Markus Eigruber & Franz Wirl, 2018. "Climate Engineering in an Interconnected World: The Role of Tariffs," Dynamic Games and Applications, Springer, vol. 8(3), pages 573-587, September.
    10. Rickels, Wilfried & Quaas, Martin F. & Ricke, Katharine & Quaas, Johannes & Moreno-Cruz, Juan & Smulders, Sjak, 2020. "Who turns the global thermostat and by how much?," Energy Economics, Elsevier, vol. 91(C).
    11. Todd Sandler, 2018. "Collective action and geoengineering," The Review of International Organizations, Springer, vol. 13(1), pages 105-125, March.
    12. Irina Bakalova & Mariia Belaia, 2023. "Stability of Efficient International Agreements on Solar Geoengineering," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 86(3), pages 673-712, November.
    13. Heyen, Daniel, 2015. "Strategic Conflicts on the Horizon: R&D Incentives for Environmental Technologies," Working Papers 0584, University of Heidelberg, Department of Economics.
    14. Fabien Prieur & Martin Quaas & Ingmar Schumacher, 2019. "Mitigation strategies under the threat of solar radiation management," EconomiX Working Papers 2019-3, University of Paris Nanterre, EconomiX.
    15. Richard S.J. Tol, 2016. "Distributional Implications of Geoengineering," Working Paper Series 08316, Department of Economics, University of Sussex Business School.
    16. Richard S.J. Tol, 2016. "Distributional Implications of Geoengineering," Working Paper Series 8316, Department of Economics, University of Sussex.
    17. Acemoglu, Daron & Rafey, Will, 2023. "Mirage on the horizon: Geoengineering and carbon taxation without commitment," Journal of Public Economics, Elsevier, vol. 219(C).
    18. Daniel Heyen, 2016. "Strategic Conflicts On The Horizon: R&D Incentives For Environmental Technologies," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 1-27, November.
    19. Johannes Emmerling & Vassiliki Manoussi & Anastasios Xepapadeas, 2016. "Climate Engineering under Deep Uncertainty and Heterogeneity," Working Papers 2016.52, Fondazione Eni Enrico Mattei.
    20. Effrosyni Diamantoudi & Eftichios Sartzetakis & Stefania Strantza, 2018. "International Environmental Agreements and Trading Blocks - Can issue linkage enhance cooperation?," Discussion Paper Series 2018_07, Department of Economics, University of Macedonia, revised Jun 2018.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:7:y:2020:i:1:d:10.1057_s41599-020-0492-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.