IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2210.09145.html
   My bibliography  Save this paper

Exploring the stability of solar geoengineering agreements

Author

Listed:
  • Niklas V. Lehmann

Abstract

A simple model is introduced to study the cooperative behavior of nations regarding solar geoengineering. The results of this model are explored through numerical methods. A general finding is that cooperation and coordination between nations on solar geoengineering is very much incentivized. Furthermore, the stability of solar geoengineering agreements between nations crucially depends on the perceived riskiness of solar geoengineering. If solar geoengineering is perceived as riskier, the stability of the most stable solar geoengineering agreements is reduced. However, the stability of agreements is completely independent of countries preferences.

Suggested Citation

  • Niklas V. Lehmann, 2022. "Exploring the stability of solar geoengineering agreements," Papers 2210.09145, arXiv.org, revised May 2023.
  • Handle: RePEc:arx:papers:2210.09145
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2210.09145
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adrien Fabre & Gernot Wagner, 2020. "Availability of risky geoengineering can make an ambitious climate mitigation agreement more likely," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-4, December.
    2. Martin L. Weitzman, 2015. "A Voting Architecture for the Governance of Free-Driver Externalities, with Application to Geoengineering," Scandinavian Journal of Economics, Wiley Blackwell, vol. 117(4), pages 1049-1068, October.
    3. Rickels, Wilfried & Quaas, Martin F. & Ricke, Kate & Quaas, Johannes & Moreno Cruz, Juan & Smulders, Sjak, 2018. "Turning the global thermostat - who, when, and how much?," Kiel Working Papers 2110, Kiel Institute for the World Economy (IfW Kiel).
    4. Scott Barrett, 2014. "Solar Geoengineering’s Brave New World: Thoughts on the Governance of an Unprecedented Technology," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 8(2), pages 249-269.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Todd Sandler, 2018. "Collective action and geoengineering," The Review of International Organizations, Springer, vol. 13(1), pages 105-125, March.
    2. Ryo Moriyama & Masahiro Sugiyama & Atsushi Kurosawa & Kooiti Masuda & Kazuhiro Tsuzuki & Yuki Ishimoto, 2017. "The cost of stratospheric climate engineering revisited," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(8), pages 1207-1228, December.
    3. Muhammet A. Bas & Aseem Mahajan, 2020. "Contesting the climate," Climatic Change, Springer, vol. 162(4), pages 1985-2002, October.
    4. Heyen, Daniel & Horton, Joshua & Moreno-Cruz, Juan, 2019. "Strategic implications of counter-geoengineering: Clash or cooperation?," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 153-177.
    5. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2018. "Solar geoengineering, uncertainty, and the price of carbon," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 24-41.
    6. Michael Finus & Francesco Furini, 2022. "Global Climate Governance in the Light of Geoengineering: A Shot in the Dark?," Graz Economics Papers 2022-02, University of Graz, Department of Economics.
    7. Daniel Heyen & Thilo Wiertz & Peter Irvine, 2015. "Regional disparities in SRM impacts: the challenge of diverging preferences," Climatic Change, Springer, vol. 133(4), pages 557-563, December.
    8. Richard S.J. Tol, 2016. "Distributional Implications of Geoengineering," Working Paper Series 08316, Department of Economics, University of Sussex Business School.
    9. Rickels, Wilfried & Quaas, Martin F. & Ricke, Katharine & Quaas, Johannes & Moreno-Cruz, Juan & Smulders, Sjak, 2020. "Who turns the global thermostat and by how much?," Energy Economics, Elsevier, vol. 91(C).
    10. Richard S.J. Tol, 2016. "Distributional Implications of Geoengineering," Working Paper Series 8316, Department of Economics, University of Sussex.
    11. Garth Heutel & Juan Moreno-Cruz & Katharine Ricke, 2016. "Climate Engineering Economics," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 99-118, October.
    12. Ahlvik, Lassi & Iho, Antti, 2018. "Optimal geoengineering experiments," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 148-168.
    13. Wil Burns & Simon Nicholson, 2017. "Bioenergy and carbon capture with storage (BECCS): the prospects and challenges of an emerging climate policy response," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 7(4), pages 527-534, December.
    14. Heyen, Daniel, 2015. "Strategic Conflicts on the Horizon: R&D Incentives for Environmental Technologies," Working Papers 0584, University of Heidelberg, Department of Economics.
    15. Axel Michaelowa, 2021. "Solar Radiation Modification ‐ A “Silver Bullet” Climate Policy for Populist and Authoritarian Regimes?," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 119-128, April.
    16. Fabien Prieur & Ingmar Schumacher & Martin Quaas, 2019. "Mitigation strategies under the threat of solar radiation management," Working Papers hal-04141891, HAL.
    17. Costello, Christopher & Quérou, Nicolas & Tomini, Agnes, 2017. "Private eradication of mobile public bads," European Economic Review, Elsevier, vol. 94(C), pages 23-44.
    18. Louis-Gaëtan Giraudet & Céline Guivarch, 2018. "Asymmetric impacts and over-provision of public goods," Working Papers hal-01960318, HAL.
    19. Piergiuseppe Pezzoli & Johannes Emmerling & Massimo Tavoni, 2023. "SRM on the table: the role of geoengineering for the stability and effectiveness of climate coalitions," Climatic Change, Springer, vol. 176(10), pages 1-21, October.
    20. Todd Sandler, 2017. "Environmental cooperation: contrasting international environmental agreements," Oxford Economic Papers, Oxford University Press, vol. 69(2), pages 345-364.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2210.09145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.