IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

National climate policy implications of mitigating embodied energy system emissions

Listed author(s):
  • K. Scott

    ()

    (University of Leeds)

  • H. Daly

    (UCL Energy Institute)

  • J. Barrett

    (University of Leeds)

  • N. Strachan

    (UCL Energy Institute)

Registered author(s):

    Abstract Rapid cuts in greenhouse gas emissions require an almost complete transformation of the energy system to low carbon energy sources. Little consideration has been given to the potential adverse carbon consequences associated with the technology transition. This paper considers the embodied emissions that will occur to replace the UK’s fossil fuel-reliant energy supply with low carbon sources. The analysis generates a number of representative scenarios where emissions embodied in energy systems are integrated within current national climate and energy policy objectives. The embodied emissions associated with a new low carbon energy system are lower than the emissions reduction associated with the low carbon energy sources, confirming that there is a carbon return on investment. However, even if the UK reaches its 2050 territorial climate target, it is estimated that by 2050 an additional 200 Mt CO2 emissions are generated overseas (compared to 128 Mt generated within the UK) in the production of imported fuels and infrastructure components. The cost-optimal model results suggest that more electrification would need to occur, supported by nuclear energy, mainly in replacement of natural gas to mitigate these emissions. However, due to a number of deployment barriers, other policy interventions along the energy supply chain are likely needed, which are discussed alongside the model results. There could be more emphasis on an absolute reduction in energy demand to reduce the scale of change needed in supplying energy; new business models oriented towards performance and not sales; and existing trade schemes and international effort-sharing frameworks could be extended.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://link.springer.com/10.1007/s10584-016-1618-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Climatic Change.

    Volume (Year): 136 (2016)
    Issue (Month): 2 (May)
    Pages: 325-338

    as
    in new window

    Handle: RePEc:spr:climat:v:136:y:2016:i:2:d:10.1007_s10584-016-1618-0
    DOI: 10.1007/s10584-016-1618-0
    Contact details of provider: Web page: http://www.springer.com

    Order Information: Web: http://www.springer.com/economics/journal/10584

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. Moe, Espen, 2010. "Energy, industry and politics: Energy, vested interests, and long-term economic growth and development," Energy, Elsevier, vol. 35(4), pages 1730-1740.
    2. Unruh, Gregory C. & Carrillo-Hermosilla, Javier, 2006. "Globalizing carbon lock-in," Energy Policy, Elsevier, vol. 34(10), pages 1185-1197, July.
    3. Anderson, Kevin & Bows, Alice & Mander, Sarah, 2008. "From long-term targets to cumulative emission pathways: Reframing UK climate policy," Energy Policy, Elsevier, vol. 36(10), pages 3714-3722, October.
    4. Roelich, Katy & Knoeri, Christof & Steinberger, Julia K. & Varga, Liz & Blythe, Phil T. & Butler, David & Gupta, Rajat & Harrison, Gareth P. & Martin, Chris & Purnell, Phil, 2015. "Towards resource-efficient and service-oriented integrated infrastructure operation," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 40-52.
    5. Elorri Igos & Benedetto Rugani & Sameer Rege & Enrico Benetto & Laurent Drouet & Dan Zachary, 2015. "Combination of Equilibrium Models and Hybrid Life Cycle–Input-Output Analysis to Predict the Environmental Impacts of Energy Policy Scenarios," Working Papers 2015.62, Fondazione Eni Enrico Mattei.
    6. Howells, Mark & Rogner, Holger & Strachan, Neil & Heaps, Charles & Huntington, Hillard & Kypreos, Socrates & Hughes, Alison & Silveira, Semida & DeCarolis, Joe & Bazillian, Morgan & Roehrl, Alexander, 2011. "OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development," Energy Policy, Elsevier, vol. 39(10), pages 5850-5870, October.
    7. Stefan Pauliuk & Richard Wood & Edgar G. Hertwich, 2015. "Dynamic Models of Fixed Capital Stocks and Their Application in Industrial Ecology," Journal of Industrial Ecology, Yale University, vol. 19(1), pages 104-116, February.
    8. Crawford, R.H., 2009. "Life cycle energy and greenhouse emissions analysis of wind turbines and the effect of size on energy yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2653-2660, December.
    9. Martin, Ralf & Muûls, Mirabelle & de Preux, Laure B. & Wagner, Ulrich J., 2014. "On the empirical content of carbon leakage criteria in the EU Emissions Trading Scheme," Ecological Economics, Elsevier, vol. 105(C), pages 78-88.
    10. Suh, Sangwon, 2004. "Functions, commodities and environmental impacts in an ecological-economic model," Ecological Economics, Elsevier, vol. 48(4), pages 451-467, April.
    11. Igos, Elorri & Rugani, Benedetto & Rege, Sameer & Benetto, Enrico & Drouet, Laurent & Zachary, Daniel S., 2015. "Combination of equilibrium models and hybrid life cycle-input–output analysis to predict the environmental impacts of energy policy scenarios," Applied Energy, Elsevier, vol. 145(C), pages 234-245.
    12. Steinberger, Julia K. & van Niel, Johan & Bourg, Dominique, 2009. "Profiting from negawatts: Reducing absolute consumption and emissions through a performance-based energy economy," Energy Policy, Elsevier, vol. 37(1), pages 361-370, January.
    13. Hannon, Matthew J. & Foxon, Timothy J. & Gale, William F., 2013. "The co-evolutionary relationship between Energy Service Companies and the UK energy system: Implications for a low-carbon transition," Energy Policy, Elsevier, vol. 61(C), pages 1031-1045.
    14. Neil Strachan & Tim Foxon & Junichi Fujino, 2008. "Policy implications from the Low-Carbon Society (LCS) modelling project," Climate Policy, Taylor & Francis Journals, vol. 8(sup1), pages 17-29, December.
    15. Klaassen, Ger & Riahi, Keywan, 2007. "Internalizing externalities of electricity generation: An analysis with MESSAGE-MACRO," Energy Policy, Elsevier, vol. 35(2), pages 815-827, February.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:136:y:2016:i:2:d:10.1007_s10584-016-1618-0. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Rebekah McClure)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.