IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v115y2012i3p611-628.html

A way forward on adaptation to climate change in Colombian agriculture: perspectives towards 2050

Author

Listed:
  • Julian Ramirez-Villegas

  • Mike Salazar
  • Andy Jarvis
  • Carlos Navarro-Racines

Abstract

Policy measures regarding adaptation to climate change include efforts to adjust socio-economic and ecologic systems. Colombia has undertaken various measures in terms of climate change mitigation and adaptation since becoming a party of the Kyoto protocol in 2001 and a party of the United Nations Framework Convention on Climate Change (UNFCCC) in 1995. The first national communication to the UNFCCC stated how Colombian agriculture will be severely impacted under different emission scenarios and time frames. The analyses in this document further support that climate change will severely threaten the socioeconomics of Colombian agriculture. We first query national data sources to characterize the agricultural sector. We then use 17 Global Circulation Model (GCM) outputs to quantify how Colombian agricultural production may be affected by climate change, and show the expected changes to years 2040–2069 (“2050”) under the A2 scenario of the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES-A2) and the overall trends in both precipitation and temperature to 2100. We then evaluate expected changes within different regions and measure the proportion of area affected within each crop’s distributional range. By 2050, climatic change in Colombia will likely impact 3.5 million people, 14 % of national GDP corresponding to agriculture, employment of 21 % of the population, agro-industries, supply chains, and food and nutritional security. If no adaptation measures are taken, 80 % of crops would be impacted in more than 60 % of their current areas of cultivation, with particularly severe impacts in high value perennial and exportable crops. Impacts also include soil degradation and organic matter losses in the Andes hillsides; likely flooding in the Caribbean and Pacific coasts; niche losses for coffee, fruit, cocoa, and bananas; changes in prevalence of pests and diseases; and increases in the vulnerabilities of non-technically developed smallholders. There is, however, still time to change the current levels of vulnerability if a multidisciplinary focus (i.e., agronomic, economic, and social) in vulnerable sectors is undertaken. Each sub-sector and the Government need to invest in: (1) data collection, (2) detailed, regionally-based impact assessments, (3) research and development, and (4) extension and technology transfer. Support to vulnerable smallholders should be given by the state in the form of agricultural insurance systems contextualized under the phenomenon of climate change. A national coordination scheme led by (but not restricted to) the Ministry of Agriculture and Rural Development (MADR) with the contributions of national and international institutions is needed to address agricultural adaptation. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Julian Ramirez-Villegas & Mike Salazar & Andy Jarvis & Carlos Navarro-Racines, 2012. "A way forward on adaptation to climate change in Colombian agriculture: perspectives towards 2050," Climatic Change, Springer, vol. 115(3), pages 611-628, December.
  • Handle: RePEc:spr:climat:v:115:y:2012:i:3:p:611-628
    DOI: 10.1007/s10584-012-0500-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0500-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0500-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kattarkandi Byjesh & Soora Kumar & Pramod Aggarwal, 2010. "Simulating impacts, potential adaptation and vulnerability of maize to climate change in India," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(5), pages 413-431, June.
    2. M. Moriondo & C. Giannakopoulos & M. Bindi, 2011. "Climate change impact assessment: the role of climate extremes in crop yield simulation," Climatic Change, Springer, vol. 104(3), pages 679-701, February.
    3. Ricardo Arguello & María Clara Lozano, 2007. "Agricultural sector and competition in Colombia," Documentos de Trabajo 4368, Universidad del Rosario.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chalise, Sudarshan & Naranpanawa, Athula & Bandara, Jayatilleke S. & Sarker, Tapan, 2017. "A general equilibrium assessment of climate change–induced loss of agricultural productivity in Nepal," Economic Modelling, Elsevier, vol. 62(C), pages 43-50.
    2. Paresh B. Shirsath & Vinay Kumar Sehgal & Pramod K. Aggarwal, 2020. "Downscaling Regional Crop Yields to Local Scale Using Remote Sensing," Agriculture, MDPI, vol. 10(3), pages 1-14, March.
    3. Azam Lashkari & Amin Alizadeh & Ehsan Rezaei & Mohammad Bannayan, 2012. "Mitigation of climate change impacts on maize productivity in northeast of Iran: a simulation study," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(1), pages 1-16, January.
    4. Sudarshan Chalise & Dr Athula Naranpanawa, 2016. "Climate change adaptation in agriculture: A general equilibrium analysis of land re-allocation in Nepal," EcoMod2016 9272, EcoMod.
    5. repec:plo:pone00:0156083 is not listed on IDEAS
    6. Marmai, Nadin & Franco Villoria, Maria & Guerzoni, Marco, 2016. "How the Black Swan damages the harvest: statistical modelling of extreme events in weather and crop production in Africa, Asia, and Latin America," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201605, University of Turin.
    7. Julian Ramirez-Villegas & Colin Khoury, 2013. "Reconciling approaches to climate change adaptation for Colombian agriculture," Climatic Change, Springer, vol. 119(3), pages 575-583, August.
    8. Prabhu Pingali & Anaka Aiyar & Mathew Abraham & Andaleeb Rahman, 2019. "Transforming Food Systems for a Rising India," Palgrave Studies in Agricultural Economics and Food Policy, Palgrave Macmillan, number 978-3-030-14409-8, December.
    9. Kerber, Samuel W. & Gilbert, Alexander Q. & Deinert, Mark R. & Bazilian, Morgan D., 2021. "Understanding the nexus of energy, environment and conflict: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    10. Zagaria, Cecilia & Schulp, Catharina J.E. & Malek, Žiga & Verburg, Peter H., 2023. "Potential for land and water management adaptations in Mediterranean croplands under climate change," Agricultural Systems, Elsevier, vol. 205(C).
    11. Kizildeniz, T. & Irigoyen, J.J & Pascual, I. & Morales, F., 2018. "Simulating the impact of climate change (elevated CO2 and temperature, and water deficit) on the growth of red and white Tempranillo grapevine in three consecutive growing seasons (2013–2015)," Agricultural Water Management, Elsevier, vol. 202(C), pages 220-230.
    12. Ines Kapphan & Pierluigi Calanca & Annelie Holzkaemper, 2012. "Climate Change, Weather Insurance Design and Hedging Effectiveness," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 37(2), pages 286-317, April.
    13. V. Saravanakumar, "undated". "Impact of Climate Change on Yield of Major Food Crops in Tamil Nadu, India," Working papers 91, The South Asian Network for Development and Environmental Economics.
    14. Peihua Shi & Liang Tang & Lihuan Wang & Ting Sun & Leilei Liu & Weixing Cao & Yan Zhu, 2015. "Post-Heading Heat Stress in Rice of South China during 1981-2010," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-18, June.
    15. Khanal, Uttam & Wilson, Clevo & Rahman, Sanzidur & Lee, Boon & Hoang, Vincent, 2020. "Smallholder farmers’ adaptation to climate change and its potential contribution to UN’s sustainable development goals of zero hunger and no poverty," MPRA Paper 106917, University Library of Munich, Germany, revised 07 Sep 2020.
    16. Zhao Zhang & Yi Chen & Pin Wang & Shuai Zhang & Fulu Tao & Xiaofei Liu, 2014. "Spatial and temporal changes of agro-meteorological disasters affecting maize production in China since 1990," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 2087-2100, April.
    17. Puyu Feng & Bin Wang & De Li Liu & Hongtao Xing & Fei Ji & Ian Macadam & Hongyan Ruan & Qiang Yu, 2018. "Impacts of rainfall extremes on wheat yield in semi-arid cropping systems in eastern Australia," Climatic Change, Springer, vol. 147(3), pages 555-569, April.
    18. Wenqiang Xie & Shuangshuang Wang & Xiaodong Yan, 2022. "Evaluation and Projection of Diurnal Temperature Range in Maize Cultivation Areas in China Based on CMIP6 Models," Sustainability, MDPI, vol. 14(3), pages 1-17, January.
    19. Kakumanu, Krishna Reddy & Kuppannan, Palanisami & Aggarwal, Pramod Kumar & Ranganathan, C. R. & Nagothu, U. S., . "Adaptation strategies to address the climate change impacts in three major river basins in India," Book Chapters,, International Water Management Institute.
    20. Shirmohammadi, Bagher & Malekian, Arash & Salajegheh, Ali & Taheri, Bahram & Azarnivand, Hossein & Malek, Ziga & Verburg, Peter H., 2020. "Scenario analysis for integrated water resources management under future land use change in the Urmia Lake region, Iran," Land Use Policy, Elsevier, vol. 90(C).
    21. Yang, Chenyao & Fraga, Helder & van Ieperen, Wim & Santos, João A., 2020. "Assessing the impacts of recent-past climatic constraints on potential wheat yield and adaptation options under Mediterranean climate in southern Portugal," Agricultural Systems, Elsevier, vol. 182(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:115:y:2012:i:3:p:611-628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.