IDEAS home Printed from
   My bibliography  Save this article

A way forward on adaptation to climate change in Colombian agriculture: perspectives towards 2050


  • Julian Ramirez-Villegas


  • Mike Salazar
  • Andy Jarvis
  • Carlos Navarro-Racines


Policy measures regarding adaptation to climate change include efforts to adjust socio-economic and ecologic systems. Colombia has undertaken various measures in terms of climate change mitigation and adaptation since becoming a party of the Kyoto protocol in 2001 and a party of the United Nations Framework Convention on Climate Change (UNFCCC) in 1995. The first national communication to the UNFCCC stated how Colombian agriculture will be severely impacted under different emission scenarios and time frames. The analyses in this document further support that climate change will severely threaten the socioeconomics of Colombian agriculture. We first query national data sources to characterize the agricultural sector. We then use 17 Global Circulation Model (GCM) outputs to quantify how Colombian agricultural production may be affected by climate change, and show the expected changes to years 2040–2069 (“2050”) under the A2 scenario of the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES-A2) and the overall trends in both precipitation and temperature to 2100. We then evaluate expected changes within different regions and measure the proportion of area affected within each crop’s distributional range. By 2050, climatic change in Colombia will likely impact 3.5 million people, 14 % of national GDP corresponding to agriculture, employment of 21 % of the population, agro-industries, supply chains, and food and nutritional security. If no adaptation measures are taken, 80 % of crops would be impacted in more than 60 % of their current areas of cultivation, with particularly severe impacts in high value perennial and exportable crops. Impacts also include soil degradation and organic matter losses in the Andes hillsides; likely flooding in the Caribbean and Pacific coasts; niche losses for coffee, fruit, cocoa, and bananas; changes in prevalence of pests and diseases; and increases in the vulnerabilities of non-technically developed smallholders. There is, however, still time to change the current levels of vulnerability if a multidisciplinary focus (i.e., agronomic, economic, and social) in vulnerable sectors is undertaken. Each sub-sector and the Government need to invest in: (1) data collection, (2) detailed, regionally-based impact assessments, (3) research and development, and (4) extension and technology transfer. Support to vulnerable smallholders should be given by the state in the form of agricultural insurance systems contextualized under the phenomenon of climate change. A national coordination scheme led by (but not restricted to) the Ministry of Agriculture and Rural Development (MADR) with the contributions of national and international institutions is needed to address agricultural adaptation. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Julian Ramirez-Villegas & Mike Salazar & Andy Jarvis & Carlos Navarro-Racines, 2012. "A way forward on adaptation to climate change in Colombian agriculture: perspectives towards 2050," Climatic Change, Springer, vol. 115(3), pages 611-628, December.
  • Handle: RePEc:spr:climat:v:115:y:2012:i:3:p:611-628
    DOI: 10.1007/s10584-012-0500-y

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Andrea Bastianin & Alessandro Lanza & Matteo Manera, 2018. "Economic impacts of El Niño southern oscillation: evidence from the Colombian coffee market," Agricultural Economics, International Association of Agricultural Economists, vol. 49(5), pages 623-633, September.
    2. Anton Eitzinger & Peter Läderach & Beatriz Rodriguez & Myles Fisher & Stephen Beebe & Kai Sonder & Axel Schmidt, 2017. "Assessing high-impact spots of climate change: spatial yield simulations with Decision Support System for Agrotechnology Transfer (DSSAT) model," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(5), pages 743-760, June.
    3. Xu, Bin & Lin, Boqiang, 2017. "Factors affecting CO2 emissions in China’s agriculture sector: Evidence from geographically weighted regression model," Energy Policy, Elsevier, vol. 104(C), pages 404-414.
    4. Trinh, Thoai Quang & Rañola, Roberto F. & Camacho, Leni D. & Simelton, Elisabeth, 2018. "Determinants of farmers’ adaptation to climate change in agricultural production in the central region of Vietnam," Land Use Policy, Elsevier, vol. 70(C), pages 224-231.
    5. Rishikesh Pandey, 2019. "Farmers’ perception on agro-ecological implications of climate change in the Middle-Mountains of Nepal: a case of Lumle Village, Kaski," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(1), pages 221-247, February.
    6. Venturin, Afonso Zucolotto & Guimarães, Claudinei Martins & Sousa, Elias Fernandes de & Machado Filho, José Altino & Rodrigues, Weverton Pereira & Serrazine, Ícaro de Araujo & Bressan-Smith, Ricardo &, 2020. "Using a crop water stress index based on a sap flow method to estimate water status in conilon coffee plants," Agricultural Water Management, Elsevier, vol. 241(C).
    7. Michael L. Mann & James M. Warner & Arun S. Malik, 2019. "Predicting high-magnitude, low-frequency crop losses using machine learning: an application to cereal crops in Ethiopia," Climatic Change, Springer, vol. 154(1), pages 211-227, May.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:115:y:2012:i:3:p:611-628. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.