IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v27y2006i3p113-134.html
   My bibliography  Save this article

The Timing of Biological Carbon Sequestration and Carbon Abatement in the Energy Sector Under Optimal Strategies Against Climate Risks

Author

Listed:
  • Vincent Gitz
  • Jean-Charles Hourcade
  • Philippe Ciais

Abstract

This paper addresses the timing of the use of biological carbon sequestration and its capacity to alleviate the carbon constraint on the energy sector. We constructed a stochastic optimal control model balancing the costs of fossil emission abatement, the opportunity costs of lands allocated to afforestation, and the costs of uncertain climate damages. We show that a minor part of the sequestration potential should start immediately as a “brake†, slowing down both the rate of growth of concentrations and the rate of abatement in the energy sector, thus increasing the option value of the emission trajectories. But, most of the potential is put in reserve to be used as a “safety valve†after the resolution of uncertainty, if a higher and faster decarbonization is required: sequestration cuts off the peaks of costs of fossil abatement and postpones the pivoting of the energy system by up to two decades.

Suggested Citation

  • Vincent Gitz & Jean-Charles Hourcade & Philippe Ciais, 2006. "The Timing of Biological Carbon Sequestration and Carbon Abatement in the Energy Sector Under Optimal Strategies Against Climate Risks," The Energy Journal, , vol. 27(3), pages 113-134, July.
  • Handle: RePEc:sae:enejou:v:27:y:2006:i:3:p:113-134
    DOI: 10.5547/ISSN0195-6574-EJ-Vol27-No3-7
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/ISSN0195-6574-EJ-Vol27-No3-7
    Download Restriction: no

    File URL: https://libkey.io/10.5547/ISSN0195-6574-EJ-Vol27-No3-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter M. Cox & Richard A. Betts & Chris D. Jones & Steven A. Spall & Ian J. Totterdell, 2000. "Erratum: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model," Nature, Nature, vol. 408(6813), pages 750-750, December.
    2. Peter M. Cox & Richard A. Betts & Chris D. Jones & Steven A. Spall & Ian J. Totterdell, 2000. "Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model," Nature, Nature, vol. 408(6809), pages 184-187, November.
    3. M. Ha-Duong & M. J. Grubb & J.-C. Hourcade, 1997. "Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement," Nature, Nature, vol. 390(6657), pages 270-273, November.
    4. Bruce A. McCarl & Uwe A. Schneider, 2000. "U.S. Agriculture's Role in a Greenhouse Gas Emission Mitigation World: An Economic Perspective," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 22(1), pages 134-159.
    5. Brent Sohngen & Robert Mendelsohn, 2003. "An Optimal Control Model of Forest Carbon Sequestration," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 448-457.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fouad El Ouardighi & Eugene Khmelnitsky & Marc Leandri, 2020. "Production-based pollution versus deforestation: optimal policy with state-independent and-dependent environmental absorption efficiency restoration process," Annals of Operations Research, Springer, vol. 292(1), pages 1-26, September.
    2. Eliseev, Alexey V. & Mokhov, Igor I., 2008. "Eventual saturation of the climate–carbon cycle feedback studied with a conceptual model," Ecological Modelling, Elsevier, vol. 213(1), pages 127-132.
    3. Brovkin, Victor & Cherkinsky, Alexander & Goryachkin, Sergey, 2008. "Estimating soil carbon turnover using radiocarbon data: A case-study for European Russia," Ecological Modelling, Elsevier, vol. 216(2), pages 178-187.
    4. Ulaganathan, Kandasamy & Goud, Sravanthi & Reddy, Madhavi & Kayalvili, Ulaganathan, 2017. "Genome engineering for breaking barriers in lignocellulosic bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1080-1107.
    5. Agudelo, César Augusto Ruiz & Bustos, Sandra Liliana Hurtado & Moreno, Carmen Alicia Parrado, 2020. "Modeling interactions among multiple ecosystem services. A critical review," Ecological Modelling, Elsevier, vol. 429(C).
    6. Rickels, Wilfried & Rehdanz, Katrin & Oschlies, Andreas, 2012. "Economic prospects of ocean iron fertilization in an international carbon market," Resource and Energy Economics, Elsevier, vol. 34(1), pages 129-150.
    7. Ouardighi, Fouad El & Sim, Jeong Eun & Kim, Bowon, 2016. "Pollution accumulation and abatement policy in a supply chain," European Journal of Operational Research, Elsevier, vol. 248(3), pages 982-996.
    8. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.
    9. Yonghua Li & Song Yao & Hezhou Jiang & Huarong Wang & Qinchuan Ran & Xinyun Gao & Xinyi Ding & Dandong Ge, 2022. "Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China," Land, MDPI, vol. 11(12), pages 1-22, December.
    10. U. Persson & Christian Azar, 2007. "Tropical deforestation in a future international climate policy regime—lessons from the Brazilian Amazon," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(7), pages 1277-1304, August.
    11. Wang, Weilong & Xiao, Jing & Wei, Xiaolan & Ding, Jing & Wang, Xiaoxing & Song, Chunshan, 2014. "Development of a new clay supported polyethylenimine composite for CO2 capture," Applied Energy, Elsevier, vol. 113(C), pages 334-341.
    12. Arce, G.L.A.F. & Carvalho, J.A. & Nascimento, L.F.C., 2014. "A time series sequestration and storage model of atmospheric carbon dioxide," Ecological Modelling, Elsevier, vol. 272(C), pages 59-67.
    13. Sato, Hisashi & Itoh, Akihiko & Kohyama, Takashi, 2007. "SEIB–DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individual-based approach," Ecological Modelling, Elsevier, vol. 200(3), pages 279-307.
    14. Fouad El Ouardighi & Hassan Benchekroun & Dieter Grass, 2016. "Self-regenerating environmental absorption efficiency and the $$\varvec{ soylent~green~scenario}$$ s o y l e n t g r e e n s c e n a r i o," Annals of Operations Research, Springer, vol. 238(1), pages 179-198, March.
    15. Cuce, Pinar Mert & Riffat, Saffa, 2015. "A comprehensive review of heat recovery systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 665-682.
    16. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    17. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2020. "Climate change and green transitions in an agent-based integrated assessment model," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    18. Elizabeth Kopits & Alex L. Marten & Ann Wolverton, 2013. "Moving Forward with Incorporating "Catastrophic" Climate Change into Policy Analysis," NCEE Working Paper Series 201301, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Jan 2013.
    19. Yuting Zhou & Grace E. Klinger & Eric L. Hegg & Christopher M. Saffron & James E. Jackson, 2022. "Skeletal Ni electrode-catalyzed C-O cleavage of diaryl ethers entails direct elimination via benzyne intermediates," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Wramneby, Anna & Smith, Benjamin & Zaehle, Sönke & Sykes, Martin T., 2008. "Parameter uncertainties in the modelling of vegetation dynamics—Effects on tree community structure and ecosystem functioning in European forest biomes," Ecological Modelling, Elsevier, vol. 216(3), pages 277-290.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:27:y:2006:i:3:p:113-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.