IDEAS home Printed from https://ideas.repec.org/a/ren/journl/v3y2011i2p109-128.html
   My bibliography  Save this article

Clustering and Classification in Option Pricing

Author

Listed:
  • Nikola Gradojevic

    (Lakehead University, The Rimini Center for Economic Analysis)

  • Dragan Kukolj

    (University of Novi Sad)

  • Ramazan Gencay

    (Simon Fraser University, The Rimini Center for Economic Analysis)

Abstract

This paper reviews the recent option pricing literature and investigates how clustering and classification can assist option pricing models. Specifically, we consider non-parametric modular neural network (MNN) models to price the S&P-500 European call options. The focus is on decomposing and classifying options data into a number of sub-models across moneyness and maturity ranges that are processed individually. The fuzzy learning vector quantization (FLVQ) algorithm we propose generates decision regions (i.e., option classes) divided by ÔintelligentÕ classification boundaries. Such an approach improves generaliza- tion properties of the MNN model and thereby increases its pricing accuracy.

Suggested Citation

  • Nikola Gradojevic & Dragan Kukolj & Ramazan Gencay, 2011. "Clustering and Classification in Option Pricing," Review of Economic Analysis, Digital Initiatives at the University of Waterloo Library, vol. 3(2), pages 109-128, October.
  • Handle: RePEc:ren:journl:v:3:y:2011:i:2:p:109-128
    as

    Download full text from publisher

    File URL: http://www.rofea.org/index.php?journal=journal&page=article&op=download&path%5B%5D=59&path%5B%5D=60
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
    2. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    3. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    4. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    5. Ait-Sahalia, Yacine & Duarte, Jefferson, 2003. "Nonparametric option pricing under shape restrictions," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 9-47.
    6. Garcia, Rene & Gencay, Ramazan, 2000. "Pricing and hedging derivative securities with neural networks and a homogeneity hint," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 93-115.
    7. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    8. Yoshida, Yuji, 2003. "The valuation of European options in uncertain environment," European Journal of Operational Research, Elsevier, vol. 145(1), pages 221-229, February.
    9. Carl Chiarella, Nadima El-Hassan, & Adam Kucera, "undated". "Option Pricing in a Path Integral Framework Using Fourier-Hermite Series Expansions," Computing in Economics and Finance 1997 132, Society for Computational Economics.
    10. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 2000. "Pricing and hedging long-term options," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 277-318.
    11. Peter Carr & Hélyette Geman & Dilip B. Madan & Marc Yor, 2003. "Stochastic Volatility for Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 345-382, July.
    12. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    13. Ramazan Gencay & Aslihan Salih, 2003. "Degree of Mispricing with the Black-Scholes Model and Nonparametric Cures," Annals of Economics and Finance, Society for AEF, vol. 4(1), pages 73-101, May.
    14. Melick, William R. & Thomas, Charles P., 1997. "Recovering an Asset's Implied PDF from Option Prices: An Application to Crude Oil during the Gulf Crisis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(1), pages 91-115, March.
    15. Chiarella, Carl & El-Hassan, Nadima & Kucera, Adam, 1999. "Evaluation of American option prices in a path integral framework using Fourier-Hermite series expansions," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1387-1424, September.
    16. Nikola Gradojevic & Ramazan Gencay & Dragan Kukolj, 2009. "Option Pricing with Modular Neural Networks," Working Paper series 32_09, Rimini Centre for Economic Analysis.
    17. Andreas Behr & Ulrich Pötter, 2009. "Alternatives to the normal model of stock returns: Gaussian mixture, generalised logF and generalised hyperbolic models," Annals of Finance, Springer, vol. 5(1), pages 49-68, January.
    18. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    19. repec:dau:papers:123456789/1392 is not listed on IDEAS
    20. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gradojevic Nikola, 2016. "Multi-criteria classification for pricing European options," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 123-139, April.
    2. Liu, Xiaoquan & Cao, Yi & Ma, Chenghu & Shen, Liya, 2019. "Wavelet-based option pricing: An empirical study," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1132-1142.
    3. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    4. Dragan Kukolj & Nikola Gradojevic & Camillo Lento, 2012. "Improving Non-Parametric Option Pricing during the Financial Crisis," Working Paper series 35_12, Rimini Centre for Economic Analysis.
    5. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    6. G. C. Lim & G. M. Martin & V. L. Martin, 2005. "Parametric pricing of higher order moments in S&P500 options," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 377-404, March.
    7. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    8. Rombouts, Jeroen V.K. & Stentoft, Lars, 2015. "Option pricing with asymmetric heteroskedastic normal mixture models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 635-650.
    9. Cao, Yi & Liu, Xiaoquan & Zhai, Jia, 2021. "Option valuation under no-arbitrage constraints with neural networks," European Journal of Operational Research, Elsevier, vol. 293(1), pages 361-374.
    10. Andreou, Panayiotis C. & Charalambous, Chris & Martzoukos, Spiros H., 2010. "Generalized parameter functions for option pricing," Journal of Banking & Finance, Elsevier, vol. 34(3), pages 633-646, March.
    11. Audrino, Francesco & Fengler, Matthias R., 2015. "Are classical option pricing models consistent with observed option second-order moments? Evidence from high-frequency data," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 46-63.
    12. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    13. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    14. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    15. Song, Zhaogang & Xiu, Dacheng, 2016. "A tale of two option markets: Pricing kernels and volatility risk," Journal of Econometrics, Elsevier, vol. 190(1), pages 176-196.
    16. Peter Christoffersen & Kris Jacobs & Chayawat Ornthanalai, 2009. "Exploring Time-Varying Jump Intensities: Evidence from S&P500 Returns and Options," CIRANO Working Papers 2009s-34, CIRANO.
    17. Li, Gang & Zhang, Chu, 2013. "Diagnosing affine models of options pricing: Evidence from VIX," Journal of Financial Economics, Elsevier, vol. 107(1), pages 199-219.
    18. Jiang, George J. & Tian, Yisong S., 2010. "Misreaction or misspecification? A re-examination of volatility anomalies," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2358-2369, October.
    19. Ke Nian & Thomas F. Coleman & Yuying Li, 2018. "Learning minimum variance discrete hedging directly from the market," Quantitative Finance, Taylor & Francis Journals, vol. 18(7), pages 1115-1128, July.
    20. Claudia Yeap & Simon S Kwok & S T Boris Choy, 2018. "A Flexible Generalized Hyperbolic Option Pricing Model and Its Special Cases," Journal of Financial Econometrics, Oxford University Press, vol. 16(3), pages 425-460.

    More about this item

    Keywords

    Option Pricing; Clustering; Parametric Methods; Non-parametric Methods; Fuzzy Logic;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ren:journl:v:3:y:2011:i:2:p:109-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Jerzy (Jurek) Konieczny (email available below). General contact details of provider: http://www.rcfea.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.