IDEAS home Printed from https://ideas.repec.org/p/rim/rimwps/35_12.html
   My bibliography  Save this paper

Improving Non-Parametric Option Pricing during the Financial Crisis

Author

Listed:
  • Dragan Kukolj

    () (Faculty of Technical Sciences, University of Novi Sad, Serbia)

  • Nikola Gradojevic

    () (Faculty of Business Administration, Lakehead University, Canada; The Rimini Centre for Economic Analysis, Italy)

  • Camillo Lento

    () (Faculty of Business Administration, Lakehead University, Canada)

Abstract

Financial option prices have experienced excessive volatility in response to the recent economic and financial crisis. During the crisis periods, financial markets are, in general, subject to an abrupt regime shift which imposes a significant challenge to option pricing models. In this context, swiftly evolving markets and institutions require valuation models that are capable of recognizing and adapting to such changes. Both parametric and non-parametric pricing models have shown poor forecast ability for options traded in late 1987 and 2008. Surprisingly, the pricing inaccuracy was more pronounced for non-parametric models than for parametric models. To address this problem, we propose a modular neural network-fuzzy learning vector quantization (MNN-FLVQ) model that uses the Kohonen unsupervised learning and fuzzy clustering algorithms to classify the S&P 500 stock market index options, and thereby detect a regime shift. The results for the 2008 financial crisis demonstrate that the MNN-FLVQ model is superior to the competing methods in regards to option pricing during regime shifts.

Suggested Citation

  • Dragan Kukolj & Nikola Gradojevic & Camillo Lento, 2012. "Improving Non-Parametric Option Pricing during the Financial Crisis," Working Paper series 35_12, Rimini Centre for Economic Analysis.
  • Handle: RePEc:rim:rimwps:35_12
    as

    Download full text from publisher

    File URL: http://www.rcea.org/RePEc/pdf/wp35_12.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Garcia, Rene & Gencay, Ramazan, 2000. "Pricing and hedging derivative securities with neural networks and a homogeneity hint," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 93-115.
    2. Nikola Gradojevic & Ramazan Gencay & Dragan Kukolj, 2009. "Option Pricing with Modular Neural Networks," Working Paper series 32_09, Rimini Centre for Economic Analysis.
    3. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gradojevic Nikola, 2016. "Multi-criteria classification for pricing European options," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 123-139, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rim:rimwps:35_12. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marco Savioli). General contact details of provider: http://edirc.repec.org/data/rcfeait.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.