IDEAS home Printed from https://ideas.repec.org/p/rim/rimwps/32_09.html
   My bibliography  Save this paper

Option Pricing with Modular Neural Networks

Author

Listed:
  • Nikola Gradojevic

    (Faculty of Business Administration, Lakehead University)

  • Ramazan Gencay

    (Department of Economics, Simon Fraser University)

  • Dragan Kukolj

    (Faculty of Engineering, University of Novi Sad)

Abstract

This paper investigates a non-parametric modular neural network (MNN) model to price the S&P-500 European call options. The modules are based on time to maturity and moneyness of the options. The option price function of interest is homogenous of degree one with respect to the underlying index price and the strike price. When compared to an array of parametric and non-parametric models, the MNN method consistently exerts superior out-of-sample pricing performance. We conclude that modularity improves the generalization properties of standard feedforward neural network option pricing models (with and without the homogeneity hint).

Suggested Citation

  • Nikola Gradojevic & Ramazan Gencay & Dragan Kukolj, 2009. "Option Pricing with Modular Neural Networks," Working Paper series 32_09, Rimini Centre for Economic Analysis.
  • Handle: RePEc:rim:rimwps:32_09
    as

    Download full text from publisher

    File URL: http://www.rcea.org/RePEc/pdf/wp32_09.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Option Pricing; Modular Neural Networks; Non-parametric Methods;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rim:rimwps:32_09. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marco Savioli (email available below). General contact details of provider: https://edirc.repec.org/data/rcfeait.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.