IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0195286.html
   My bibliography  Save this article

Metrics and methods for characterizing dairy farm intensification using farm survey data

Author

Listed:
  • Alejandra Gonzalez-Mejia
  • David Styles
  • Paul Wilson
  • James Gibbons

Abstract

Evaluation of agricultural intensification requires comprehensive analysis of trends in farm performance across physical and socio-economic aspects, which may diverge across farm types. Typical reporting of economic indicators at sectorial or the “average farm” level does not represent farm diversity and provides limited insight into the sustainability of specific intensification pathways. Using farm business data from a total of 7281 farm survey observations of English and Welsh dairy farms over a 14-year period we calculate a time series of 16 key performance indicators (KPIs) pertinent to farm structure, environmental and socio-economic aspects of sustainability. We then apply principle component analysis and model-based clustering analysis to identify statistically the number of distinct dairy farm typologies for each year of study, and link these clusters through time using multidimensional scaling. Between 2001 and 2014, dairy farms have largely consolidated and specialized into two distinct clusters: more extensive farms relying predominantly on grass, with lower milk yields but higher labour intensity, and more intensive farms producing more milk per cow with more concentrate and more maize, but lower labour intensity. There is some indication that these clusters are converging as the extensive cluster is intensifying slightly faster than the intensive cluster, in terms of milk yield per cow and use of concentrate feed. In 2014, annual milk yields were 6,835 and 7,500 l/cow for extensive and intensive farm types, respectively, whilst annual concentrate feed use was 1.3 and 1.5 tonnes per cow. For several KPIs such as milk yield the mean trend across all farms differed substantially from the extensive and intensive typologies mean. The indicators and analysis methodology developed allows identification of distinct farm types and industry trends using readily available survey data. The identified groups allow the accurate evaluation of the consequences of the reduction in dairy farm numbers and intensification at national and international scales.

Suggested Citation

  • Alejandra Gonzalez-Mejia & David Styles & Paul Wilson & James Gibbons, 2018. "Metrics and methods for characterizing dairy farm intensification using farm survey data," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-18, May.
  • Handle: RePEc:plo:pone00:0195286
    DOI: 10.1371/journal.pone.0195286
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0195286
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0195286&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0195286?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fengxia Dong & David A. Hennessy & Helen H. Jensen & Richard J. Volpe, 2016. "Technical efficiency, herd size, and exit intentions in U.S. dairy farms," Agricultural Economics, International Association of Agricultural Economists, vol. 47(5), pages 533-545, September.
    2. Ernest Reig‐Martínez & José A. Gómez‐Limón & Andrés J. Picazo‐Tadeo, 2011. "Ranking farms with a composite indicator of sustainability," Agricultural Economics, International Association of Agricultural Economists, vol. 42(5), pages 561-575, September.
    3. Van Middelaar, C.E. & Berentsen, P.B.M. & Dijkstra, J. & De Boer, I.J.M., 2013. "Evaluation of a feeding strategy to reduce greenhouse gas emissions from dairy farming: The level of analysis matters," Agricultural Systems, Elsevier, vol. 121(C), pages 9-22.
    4. O’Brien, Donal & Shalloo, Laurence & Patton, Joe & Buckley, Frank & Grainger, Chris & Wallace, Michael, 2012. "A life cycle assessment of seasonal grass-based and confinement dairy farms," Agricultural Systems, Elsevier, vol. 107(C), pages 33-46.
    5. Chris Fraley & Adrian E. Raftery, 2007. "Bayesian Regularization for Normal Mixture Estimation and Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 24(2), pages 155-181, September.
    6. Oecd, 2002. "Access for Business," OECD Digital Economy Papers 67, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Noah J Miller & Jason S Bergtold & Allen M Featherstone, 2019. "Economic elasticities of input substitution using data envelopment analysis," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-15, August.
    2. Elizabeth Ahikiriza & Joshua Wesana & Xavier Gellynck & Guido Van Huylenbroeck & Ludwig Lauwers, 2021. "Context Specificity and Time Dependency in Classifying Sub-Saharan Africa Dairy Cattle Farmers for Targeted Extension Farm Advice: The Case of Uganda," Agriculture, MDPI, vol. 11(9), pages 1-19, August.
    3. Jan Van der Lee & Laurens Klerkx & Bockline Omedo Bebe & Ashenafi Mengistu & Simon Oosting, 2018. "Intensification and Upgrading Dynamics in Emerging Dairy Clusters in the East African Highlands," Sustainability, MDPI, vol. 10(11), pages 1-24, November.
    4. Alba Vázquez-López & Martín Barrasa-Rioja & Manuel Marey-Perez, 2021. "ICT in Rural Areas from the Perspective of Dairy Farming: A Systematic Review," Future Internet, MDPI, vol. 13(4), pages 1-18, April.
    5. Zehetmeier, M. & Läpple, D. & Hoffmann, H. & Zerhusen, B. & Strobl, M. & Meyer-Aurich, A. & Kapfer, M., 2020. "Is there a joint lever? Identifying and ranking factors that determine GHG emissions and profitability on dairy farms in Bavaria, Germany," Agricultural Systems, Elsevier, vol. 184(C).
    6. Alba Vázquez-López & Manuel Marey-Perez, 2021. "Factors Affecting e-Government Adoption by Dairy Farmers: A Case Study in the North-West of Spain," Future Internet, MDPI, vol. 13(8), pages 1-17, August.
    7. Georgia Koutouzidou & Athanasios Ragkos & Katerina Melfou, 2022. "Evolution of the Structure and Economic Management of the Dairy Cow Sector," Sustainability, MDPI, vol. 14(18), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meul, Marijke & Van Middelaar, Corina E. & de Boer, Imke J.M. & Van Passel, Steven & Fremaut, Dirk & Haesaert, Geert, 2014. "Potential of life cycle assessment to support environmental decision making at commercial dairy farms," Agricultural Systems, Elsevier, vol. 131(C), pages 105-115.
    2. Pereira, Pedro & Ribeiro, Tiago, 2011. "The impact on broadband access to the Internet of the dual ownership of telephone and cable networks," International Journal of Industrial Organization, Elsevier, vol. 29(2), pages 283-293, March.
    3. Vitor Braga, 2004. "Business networking for SMEs as a means to promote regional competitiveness: A Theoretical Framework," ERSA conference papers ersa04p455, European Regional Science Association.
    4. M. Kamil Kozan & Levent Akdeniz, 2014. "Role of Strong versus Weak Networks in Small Business Growth in an Emerging Economy," Administrative Sciences, MDPI, vol. 4(1), pages 1-16, February.
    5. Lai, John & Olynk Widmar, Nicole J. & Gunderson, Michael A. & Widmar, David A. & Ortega, David L., 2018. "Prioritization of farm success factors by commercial farm managers," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 21(6), July.
    6. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    7. Junfu Zhang, 2011. "The advantage of experienced start-up founders in venture capital acquisition: evidence from serial entrepreneurs," Small Business Economics, Springer, vol. 36(2), pages 187-208, February.
    8. Sucharitha, Rahul Srinivas & Lee, Seokcheon, 2022. "GMM clustering for in-depth food accessibility pattern exploration and prediction model of food demand behavior," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    9. Ágnes Nemcsicsné Zsóka, 2007. "The role of organisational culture in the environmental awareness of companies," Journal of East European Management Studies, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 12(2), pages 109-131.
    10. Palmero, Alfredo Jiménez & Herrera, Juan José Durán & Sabaté, Juan Manuel de la Fuente, 2013. "The role of psychic distance stimuli on the East-West FDI location structure in the EU. Evidence from Spanish MNEs," Journal of East European Management Studies, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 18(1), pages 36-65.
    11. Anna Gaviglio & Mattia Bertocchi & Maria Elena Marescotti & Eugenio Demartini & Alberto Pirani, 2016. "The social pillar of sustainability: a quantitative approach at the farm level," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 4(1), pages 1-19, December.
    12. App, Stefanie & Merk, Janina & Buettgen, Marion, 2012. "Employer Branding: Sustainable HRM as a Competitive Advantage in the Market for High-Quality Employees," management revue - Socio-Economic Studies, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 23(3), pages 262-278.
    13. Galina Hale & João A. C. Santos, 2006. "Evidence on the costs and benefits of bond IPOs," Working Paper Series 2006-42, Federal Reserve Bank of San Francisco.
    14. Meng Wang & Lining Gan, 2018. "Religion and Corporate Innovation," Business and Management Studies, Redfame publishing, vol. 4(1), pages 81-95, March.
    15. Kym Anderson, 2003. "Trade Liberalization, Agriculture, and Poverty in Low-income Countries," WIDER Working Paper Series DP2003-25, World Institute for Development Economic Research (UNU-WIDER).
    16. Krug, B. & Hendrischke, H., 2006. "Framing China: Transformation and Institutional Change," ERIM Report Series Research in Management ERS-2006-025-ORG, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    17. Adam, Klaus & Merkel, Sebastian, 2019. "Stock price cycles and business cycles," Working Paper Series 2316, European Central Bank.
    18. Cervero, Robert, 2005. "Accessible Cities and Regions: A Framework for Sustainable Transport and Urbanism in the 21st Century," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt27g2q0cx, Institute of Transportation Studies, UC Berkeley.
    19. Anders, Sven M. & Caswell, Julie A., 2006. "Assessing the Impact of Stricter Food Safety Standards on Trade: HACCP in U.S. Seafood Trade with the Developing World," 2006 Annual meeting, July 23-26, Long Beach, CA 21338, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    20. Konon, Alexander, 2016. "Career choice under uncertainty," VfS Annual Conference 2016 (Augsburg): Demographic Change 145583, Verein für Socialpolitik / German Economic Association.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0195286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.